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Random series and discrete path integral methods: The lwg-Ciesielski implementation
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We perform a thorough analysis of the relationship between discrete and series representation path integral
methods, which are the main numerical techniques used in connection with the Feynmianaiida. First, an
interpretation of the so-called standard discrete path integral methods is derived by direct discretization of the
Feynman-Kacformula. Second, we consider a particular random series technique based uporvyhe Le
Ciesielski representation of the Brownian bridge and analyze its main implementations, namely the primitive,
the partial averaging, and the reweighted versions. It is shown that=tt#— 1 subsequence of each of these
methods can also be interpreted as a discrete path integral method with appropriate short-time approximations.
We therefore establish a direct connection between the discrete and the random series approaches. In the end,
we give sharp estimates on the rates of convergence of the partial averaging and the reweighted Le
Ciesielski random series approach for sufficiently smooth potentials. The asymptotic rates of convergence are
found to beO(1/n?), in agreement with the rates of convergence of the best standard discrete path integral

techniques.
DOI: 10.1103/PhysReVvE.67.026124 PACS nuni)er05.30-d, 02.70.Ss
[. INTRODUCTION a Brownian motion conditioned o, =0 [9]. In this paper,

we shall reserve the symbalto denote the expected value

Ever since their introduction over fifty years ago, path(average valueof a certain random variable against the un-
integral methods have been an intense research field faterlying probability measure of the Brownian bridBg. To
physicists, chemists, and mathematicians alike, even if thessomplete the description of Eql), we setx,(u)=x+ (x’
researchers have sometimes used arguments of a rather difx)u (called the reference patho=(#2B/my)*? and let
ferent nature. The field opend with Feynman’s observation, (x,x’; 8) denote the density matrix for a similar free par-
[1] that the time propagator of the Schinger equation can ticle.
be represented as a “sum over histories,” effectively giving a Rather than directly employing Eql), chemical physi-
formula for the propagator as a limit of integrals over spacegist's arguments are usually constructed around the Trotter
of increasing dimensiof2]. In mathematical terms, the ex- composition rule[10] that exploits the fact thafe A" g
istence of this limit is problematic, though several researckbo} is a semigroup of operators drf(IR), so that
directions are known3-6].

In a significant development, Kamticed that the “imagi- e (B1tBIH= g~ B1Ha=BH 2
nary time” version of the formula utilized by Feynman has a
definite probabilistic sense and could be interpreted as B in coordinate representation,
integral of a functional of the seemingly ubiquitous Brown-
ian motion[7]. Such a formula could represent the Green'’s
function for a certain class of diffusion processes, as, for <X|e7(51+BZ)H|X’>:j dz(x|e #H|z)(z]e PH|x"). (3)
instance, the density matrix for the Bloch equation. The end R
product of their work is beautifully summarized by what is
now called the Feynman-K&ormula 8] By writing S=2}_, B\, repeatedly applying the Trotter rule,

and choosing an adequate short-time approximation, one

p(x,x";8) 1 ends up with a sequence of integrals on spaces of increasing
—,_:]Eexp( —,Bf V(xr(u)+(rBS)du ) dimension, converging to the density matrix as max,Sx
Pip(X,X"; 8) 0 —0. Of course, this is much in the spirit of the original

Feynman path integral approach. The methods deduced by
where p(x,x’; B) is the density matrix for a monodimen- this technique are usually called discrete path inte(&ll)
sional canonical system characterized by the inverse temmethods(see Ref[11] and references cited thergin
peraturef=1/(kgT) and is made up of identical particles of |t has become apparent that the Katerpretation of Fey-
massmg moving in the potentiaV(x). The stochastic ele- nman’s formula may, in fact, offer a valuable starting point
ment that appears in E€), {BJ,u=0}, is a so-called stan- for the general construction of finite-dimensional approxima-
dard Brownian bridge defined as follows:{B,,u=0} is a tions to the density matrix. This is so because the Brownian
standard Brownian motion starting at zero, then the Brownmotion is a mathematically well understood object, for which
ian bridge is the stochastic procg&,|B,;=0,0<u<1}i.e., various constructions are known. For example, the use of the

Ito-Nisio theorem[12] has led the present authors to the

development of the random series path integral methods in a

*Electronic address: Cristian_Predescu@brown.edu surprisingly general fashiof13]. This generality of the
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theory allows one to identify optimality criteria and eventu- which is of order 1. More generally, the order of a splitting
ally answer questions as to what the best representation is érmula is said to be if the relative error isO(8%"1). The
how to modify the approach in order to improve the conver-motivation for this is that if
gence.

In this paper, we shall look at the relation between the e AKVI=f (K, V;B)[1+0(B* )],
Kag interpretation of the Feynman formula and discrete pat hen
the standard DPI methods. We shall again show the strength n Kl
of the Kacapproach, at least in terms of generality and math- e AlK+V) = fk( K,V: E” B )l (6)
ematical interpretation of the formulas. In the second part, n k
we explore the connection between the random series tech- ]
nique, as particularized for the \yg-Ciesielski series repre- 1-€- the error of the flnah-term Trotter product formula de-
sentation of the Brownian bridge, and certain DPI result<Cays as fast asdf. The relation(6) was actually proved by
from the chemical literature. While not the primary goal, we Suzuki[16] in terms of operator norms for bounded opera-
do obtain in an effortless manner a better way of implement{ors A andB, but such an estimation also holds trandV
ing the latter results that feature a “built-in” fast sine-Fourier (Which ~ generally are unbounded operators; however,
transform. We shall also derive the two basic modification **") is bounded for most of the potentials of physical
of the Levy-Ciesielski path integral method@ CPI), the par- ~ interest and for all positivgs).
tial averaging[ls,lzu and the reweighted techniquéks], A better Spllttlng is offered by the three-term formula
and establish their asymptotic law of convergence. We sug- KAV o (U2)BY e — BK o (12)BY
gest that these results again emphasize the power of the Kac e Al =e IRV e (R 1+ O(8%)],  (7)

interpretation of the Feynman formula. By providing a cen-or that obtained by permuting with K. These are of order 2
tral framework for discussion and analysis, the, Kpproach  anq go by the name of symmetrical trapezoidal Trotter short-
significantly aids in characterizing the various methods angjme approximation§15,17. More generally, let us define a

in establishing their interconnections, links that otherwise(2|+1)_term splitting formula of ordek by the expression
would be obscured by the multitude of possible representa-

1+0

integral methods. In the first part, we consider what we cal
n

tions. e~ BK+V) — g—20BVg—b1BKg=a1BV. .. o= b BKg—2yBY
X[1+0(B“H]. (8)
Il. THE STANDARD DISCRETE PATH INTEGRAL
METHOD Symmetry arguments suggest that for the optimum
(21 +1)-term splitting formula, the sequences, ... .3

A. Trotter-Suzuki approach . L . -
PP andb, ... b, should bepalindromig i.e., if the coefficients

Our definition of the standard DPI method has to do withare read left to right, they form the same numerical sequence
the particular short-time approximation that replaces the exas when they are read right to left. A look at the trapezoidal

act one in the Trotter product Trotter formula shows that this condition is natural, as one
has little reason to believe that anything new can be achieved
o~ BH = o~ Bl(n+DH, .. ,— Bl(n+1DH @ by considering some arbitrag 2#Ve ke~ (1-3AV decom-

position. In fact, with the help of the Campbell-Baker-
Haussdorf-Dynkin formuld 18], it can be shown that this
more general expression is an order 2 splitting onha if
We follow closely the arguments of Suzyli5]. The Hamil- ~ =1/2 and that it is an order 1 splitting otherwise. More gen-
tonian of the system can be written as a sum between th@rally, since the operate™ #" is Hermitian, it is natural and,
kinetic operator and the potential operator in the form as argued by De Raedt and De Ragtl], optimal to ap-
=K+V. The coordinate representations for the two operaProximate it by a sequence of Hermitian operators. It is

n—+1 terms

tors are analytically known to be straightforward to see that theorder Trotter product4) is
Hermitian if and only if the short-time approximatid@8) is
(xle‘BK|x’>=pfp(x,x’;ﬁ) Hermitian. In turn, this requires the palindromicity of the

{a;} and{b;} sequences.
It is not difficult to see that i;a;=p andZ;b;=q, then
the n-order Trotter formula(4) converges to eXp-B(gK
(x|e‘ﬁV|x’>=e‘5V(X)5(x’ —x), +pV)]. On the other hand, the equality

e_ﬁ(qK"' pV) = e_,B(K+V)

and

respectively. It is therefore natural to consider short-time ap-
proximations that can be expressed by a finite composition dfiolds for arbitrary potential¥/(x) if and only if g=1 and
the above density matrices. The simplest example is the twq@a=1. Therefore, the additional constrain®a;=1 and

term splitting formula 3;b;=1 must be enforced upon the sequeni@$ and{b;}.
We considered this more general problem with the hope
e AKV)= =B~ AV[1+0(B?)], (5)  that by using a more advanced splitting one may improve the
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asymptotic order of the Trotter product formula. Now, theretation of the Feynman formula. In this section, we shall de-
is one more restriction that we have to place on the sequenae/e a more general expression for the standard discrete path
ag,bi,a;, ..., namely, it should be made up ofal and integral method simply by replacing the monodimensional
positivenumbers only. Otherwise, the short-time approxima-integral overu in Eq. (1) with an approximate quadrature
tions are either ill defined or, by Trotter composition, gener-sum, and then using the definition of the Brownian bridge to
ate algorithms that are numerically unstable at low temperacompute the expectation of the resulting functional. Given
tures. Unfortunately, we have the following theorem ofthe Suzuki nonexistence theorem, it is hard to believe that
Suzuki(see Theorem 3 of Ref15]). one may eventually devise a standard DPI method with
Theorem 1 (Suzuki nonexistence theorefiere are no  asymptotic convergend®(1/n®) or better. However, before
finite length splitting formula$8) of order 3 or more such one starts to investigate the validity of this conjecture, one
that the coefficientsy,b;,a;, ... are all real and positive. needs a more general statement of the standard DPI method.
This negative result shows that more general splitting for- For obvious reasons, the random procéﬁé;x,(u)
mulas do not produce short-time approximations capable of x (y)+¢B? is called a Brownian bridge of varianag?
improving upon the trapezoidal Trotter result, at least as fag,g end points X,x'). The Feynman-Kadormula can be

as the asymptotic order of the Trotter product rule is CONexpressed in terms of the new process in the form
cerned. However, the product ru{d), which uses equally

spaced time slices, does not provide the most general stan- p(x,x";8) 1
dard DPI expression. In the following section, we shall argue — =]Eexp( —BJ V(W;X,(u))du] . (9)
that this most general expression is of the form given by Eq. Pip(X,X"; B) 0

(8), for which the Suzuki nonexistence theorem does not o . o
apply. A quite important property of the Brownian bndgéxyx,(u)

is the joint distribution of the variables

B. Direct quadrature of the Feynman-Kag formula W;T,xr(ul): . :W;T,xr(un) for a given partitioning 6<u;

. - . < e<up< i .
Let us notice that the form of Ed8) is invariant under Up=1 of the interval[0,1]. Let us set

the Trotter compositiori4) and so it can be regarded as the
most general standard DPI approximation to the density ma- _ —x2I2t
. . " ) ) P(X) €
trix, provided that we can give a recipe for choosing the 27t
sequencesy,bq,as, ... ,b;,a in such a way that the cor-
rect result is recovered in the limit—c. While in the and notice thatps,(X,X";8)=p,2(x"—x). From the very
Trotter-Suzuki approach this may seem a daunting task, theéefinition of the Brownian motiofi19], the aforementioned
problem has an easy solution by means of the iKéerpre-  joint distribution can be straightforwardly shown to be

P{W;X,(Ul) e[Xy, X +dXq], ... ,W;X,(Un) €[ Xn, Xyt dXx, ]} = pg2u1(X1_ X)poz(uzful)(xz_xl) “Po2u, -y, )
X (Xn_xn—l)paz(l—un)(X, —Xp)/Py2(X' = X)dXq - - - dX,. (10)

One may use the above joint distribution density to compute the expectations of the functionals of the Brownian bridge, which
are of the form

puz(X,_X)E{f(W;x/(ul)! e !W;X'(un))}z Xm' T ‘denf(xli e uxn)puzul(xl_X)poz(uz—ul)

R

X (Xp=Xq)+ -+ prrz(unfunfl)(xn_ Xn,l)p,,z(l,un)(x’ —Xn), (11
|
wheref(xq, ... X,) is some integrable-dimensional func- pPPl(x,x": B) n+1
tion. As a direct application of Eq11), consider a quadra- n—,=Eexp’ —/82 W V(WL (up)duy .
ture scheme on the intervgDd,1] specified by the points 0 Po(X"—X) i=0
=Ug<u;<---<u,<up;1=1 and the correspondingon- (12)
negativeweightswg,w, ... W, 1. Replacing the monodi-

mensional integral in the Feynman-Kémrmula (9) by its ~ The expectation value of this formula candseactlyreduced
guadrature form, we obtain an approximation to the densityo a finite-dimensional integral with the help of the formula
matrix of the form (11). We call Eq.(12) the standard DPI method and expect it
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to converge to the correct result for all continuous and 2.15
bounded from below potential4(x). In this respect, remem-
ber that with probability 1 the Brownian paths are continuous _ 210 t
and, therefore, so i¥(W; ,(u)) as a function ofu. Also SG‘: \
remember that by definition a quadrature schemgoti is v 2.05
constructed so that it eventually integrates all continuous g; \1\0\*
functions on[0,1]. 2.004---
Formula (12) can indeed be formally deduced starting

with the Trotter composition rul€2) and a carefully chosen L T S
sequence of short-time approximations. More precisely, for
i=0,1,...n, defined,=u;,,—u;. Then Eq(12) is nothing

else but the Trotter product FIG. 1. The current slopea!, ,—a™ for the trapezoidal rule

(TT) and for the Gauss-Legendr&L) quadrature method are

shown here to converge to the same value of 2.

e*WOBVef goﬁKefwlﬁVef 018K, .. eanBVef gnBKe7Wn+ 1/3V,

(13)  with an appropriate definition of the symbesl. These con-
vergence orders and convergence constants can be evaluated

which is of course of the type given by the formuld). numerically as follows. For each method, we compute

Finally, let us notice that we always ha¥gg,=1. We also M (0:8) = pM L (0:8)

require that;w; = 1. In fact, one is not interested in relaxing M= (n?— 1/4)In| 1+ Pan-21":P) 7 Pan+2l Y

these equalities because they are the necessary and sufficient pZ"nJrZ(O;B) —p(0;8)

conditions to obtain the exact free particle density matrix at

all levels of approximation. The reader can directly verify wherepl, ,(0;8) represents the DPI approximation of or-
this fact by assuming that the potent\{x) in Eq. (13) is  der 4n+2 for the methodVl. The evaluation of the matrix
constant but not zero. Moreover, the additional restriction ofalementSpﬁ"Mz(o;ﬁ) is discussed in Appendix B. Then, as
the integration schemes to those for which the sequefices argued in Ref[13], a[’:" as a function oh is asymptotically
andw; are palindromic is justified by the requirement thata straight line, whose slope gives the convergence order.
the approximate density matrices be Hermitian. Therefore,ay=lim,_.aM, ;—a) . As to the convergence

To summarize, the advantage of E@2) is the interpre-  constants, they can be evaluated by studying the asymptotic
tation for the sequence=u;,;—U; andw;, leading us to  sjopes of

a more general convergence problem: what is the best con-
vergence order for the standard DPI approét® and for cM=(4n+2)™M(n+1/2)[pM . (0;8)—p(0;8)],
what types of quadrature schemes is it attained? As we sug-
gested in the beginning of this section, it is very plausibleonce ay, is known. The computations were performed in
that the answer to the above question is 2 and is attained fatomic units for a particle of mags,=1 and for the har-
almost allsensiblequadrature schemes. We illustrate this bymonic oscillatorV(x) =x?/2. The inverse temperature was
studying the convergence of the diagonal matrix elemenB=10. As shown in Fig. 1, the asymptotic convergence or-
p(0;8)=(0le P"|0) of an harmonic oscillator for the fol- der of both methods is 2. The convergence constants are
lowing quadrature techniques: the trapezoidal (d1€) and  found to bec=0.103 andcg, =0.127, respectively. One
the Gauss-LegendréGL) method[20]. In both cases the notices that at the temperatyse= 10, the trapezoidal Trotter
condition Z;w;=1 and the palindromicity of the sequences method is slightly faster. However f@=1, one computes
0, andw; are respected. We leave it for the reader to showct=0.033 andcg, =0.005, which indicates that for this
that if the trapezoidal rule is used for integration, then ongemperature the Gauss-Legendre method is faster. The con-
recovers the classical trapezoidal Trotter formula. clusion we draw from this analysis is thiagtterintegration
If M stands for any of the methods studied andxjj schemes do not necessarily improve upon the convergence of
represents the convergence order of the corresponding matrike standard DPI methods. Why is this so? Again the Kac
elementp) (0;8), then the convergence constant is definednterpretation of the Feynman formula gives us an explana-
by tion which is not obvious from the Trotter composition rule.
A famous theorem by Paley, Wiener, and Zygmyiad] says
L ] M that with probability 1 the paths of the Brownian motion are
CM:n"”l” M[p(0:8) =P (0:8)]- continuous but not differentiable at every point. Therefore,
- V(x,(u)+B?) as a function ol is not differentiable even if
the potentiaV is. As emphasized by Pressal.[20], higher-
The above relation can be cast in the more intuitive bulorder quadrature schemes do not automatically translate into
equivalent form better convergence, unless the integrand is well behaved. In
our case, there is a limit upon the rate of convergence of the
quadrature schemes, which is set by the properties of the
Cm Brownian motion paths rather than by the properties of the
nem’ potential, provided that the latter has a continuous first-order

p(0;8)~pN(0;8)+
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derivative. In conclusion, one expects that there is an intrinreplaced with an independent one by simple algebraic ma-
sic limit for the convergence order of the standard DPI methnipulations. Later, Coalsof23] used a similar technique in

ods. Moreover, the Suzuki nonexistence theorem predictsrder to demonstrate, on an intuitive basis, the relation be-
that none of the classical quadrature formulas for equallgween the discrete and the Fourier path integral methods. The
spaced absciss#s.g., Simpson’s rules, Bode’s rule, etare  two approaches mentioned above are technically different,
going to improve upon the asymptotical convergence of theynd in fact there are an infinite number of such transforma-

trapezoidal rule. This is strong evidence that the intrinsigions. As we shall see in this section, they are related by
limit for the convergence order of the standard DPI methodgimme orthogonal transformations, and in Sec. IIl we shall

Is 2. propose an approach that allows for faster numerical imple-
mentations.

We begin by performing a coordinate transformation so as
to diagonalize the positive definite quadratic form associated

In practical applications, it is generally difficult to work with the kinetic operator. More precisely, let us introduce the
directly with the formula(11), because this involves a corre- transformation of coordinates,=[x,— X,(u,)]/o. By using
lated Gaussian multidimensional distribution. As shown bythe conditionZ;8,=1, it is straightforward to show that the
Butler and Friedmah22], this correlated distribution can be formula(11) becomes

C. Kinetic energy diagonalization for the standard DPI
technique

BT W (), o WE (U} = fRdzy : fRdznf(zmxr(ul), e 200+ %, (Un)P(20)

XPg,(22=21)- - Py, (Zn=Zn-1)Py (Zn),

or, in an even more compact notation, E{f(WC,,(uy) WY, (up)}
X, X oo By x!
E{F QWG (ug), ..o Wy L (ug))} 1
o e =f dal--~f da,(2m) "%exp — = >, a2
1 1 R R 2131
= | dz fd —exp{——zTAﬁ
L v A 2m)rdetA) 2 " 3,
X f x,(u1)+az S1j 3 -+ Xe(Up)
Xf(zla+xr(ul)1 e ,Zn0'+xr(un))y =1 )\J
n
where the matrixA is the n-dimensional tridiagonal matrix B
defined by A;;=1/6;+1/6;,_; for 1<i=<n and A;;;; +0121 Sh.j )\J,UZ)' (14

=Ai;q1;=—1/¢ for 1sisn-—1.
By construction, the matriX is symmetric and positive  This formula is advantageous for numerical applications, be-

definite [otherwise, the integrability of exp(z’AzZ2) would  cause the integration is performed over independent identi-

be violated and can be diagonalized by an orthogonal matrixcally distributed (i.i.d.) Gaussian distributions. Given a

S Defining the new coordinateg=S'z and letting{\; ;1 quadrature scheme, one diagonalizes the tridiagonal mfatrix

<i<n} be the set of the real and(strictly) positive eigen- and tabulates the values & ; and A;. For the case of

values ofA, we have equally spa}ced time slices, the e_zigenvectors and eigenvalues
of the matrixA are known analytically:
E{f(wixl(ul)! Tt ,W)(:X,(un))} 2 |] -
n —1/2 S,J:\/msin m) <i,j<n
~ [ v+ [ dy IT 2mh)
R R i=1 and
X ex —EEn‘, \iy? f(x(u)+a§n: S1;Y; ; |7 i
<~ MY AR A M AR )\i=4(n+1)sm2m, 1<i=<n,
n
XX (U-) + vl respectively.
r(Un) 0121 S”‘Jy') Similar to the invariance of the Brownian bridge at a

change of basis as shown by the Ito-Nisio theorem, the for-
Finally, settinga;=\{"%;, one ends up with mula(14) is invariant to arbitrary orthogonal transformations
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of the vector§=(al, ... a,). Indeed, leQ be an arbitrary In this section, we shall specialize the general theory of

n-dimensional orthogonal matrix, and consider the coordi—the random series representation of the Feynmandac

= = , > '2 mula[13] for the particular case of the kg-Ciesielski rep-
nate transformatiom’ =Q a. Notice thatXjai=2;a’{" and  esentation of the Brownian motion. The respective method
define the matrix

will be designated by the acronym LCPI. We shall also de-

n rive the three associated methods: the primitive LCPI, the

T = E S kQx | (15) partial averaging LCPI, and the reweighted LCPI. Moreover,
1) .

P} )\&/2 with the help of the Ley-Ciesielski series representation, we
shall prove the Trotter product rule for the case 2X—1
Then a little algebra shows that and for this subsequence, we shall show that each of the
above modifications of the LCPI method can be interpreted
E{f (W} . (Up), ... W, (un)} as then-order Trotter product of some appropriate short-time
' ' approximations. In doing so, we establish a direct connection
B o2 1 ) between the discrete and the random series path integral
_deal' o fRdan(Zw) ex _5241 a; techniques. As a practical application, we shall obtain a
sparse matrid of the form(15), which requires onlyD(kn)
i, " operations to compute the vectda by matrix multiplica-
X f Xr(U1)+O'jZl lejaj e ,Xr(Un)‘f'O'jZl Tn'jaj . tion.

(16) A. The Lévy-Ciesielski path integral method

Because of the additional degrees of freedom, the last Some of the arguments we use in the following introduc-
formula is more useful in practical applications than thetion to the Lery-Ciesielski representation of the Brownian

transformation(14). A good part of the computational time is bridge can be found in Ref25]. For k=1,2,... andj
spent with the evaluation of the current paths. For a monodi=1,2, . ..,¥ %, the Haar functiorf, ; is defined by
mensional system, one usually needs a number of operations o1/ A

. 2 — 2(k=1)72 te[(1—1)/2%1/2]
proportional ton“ in order to compute the vectdFa by
matrix multiplication. However, if equally spaced time slices fi (=4 -2 te[l/250+1)/2¢ 17
are used, the elements of the fornE[_,S; ;a; /)" from 0, elsewhere,

Eq. (14) can be computed by fast sine-Fourier transform in a

number of operations proportional tdog,(n), provided that  \herel =2j — 1. Together withf;=1, these functions make

n=2"—1 with k=1 [11,24. Equivalently, one may say that yp a complete orthonormal basis i#([0,1]). Their primi-
there must be some orthogonal mat@xsuch that the asso- tjyes

ciated matrixT defined by the relatiofil5) is a sparse matrix

with at mostk nonvanishing elements on any line. Therefore, 20D —(1-1)/24, te[(1—1)/2%1/24]
the_ evaluat_ion of the eIemenTsa_by direct _matrix multipli- Fei(t) = 2(k=10 (] 4 1) /2%~ 1], te[1/25(1+1)/2
cation requires onl{D(kn) operations. In this paper, we shall !

directly find such a matrit by means of the Ley-Ciesielski 0, elsewhere
representation of the Brownian bridge, which is discussed in (18)

the following sectior{see formula(27)]. are called theSchauder functionsAs McKean puts if25],

. the Schauder functions are “little tents,” which can be ob-
IIl. THE LE VY-CIESIELSKI REPRESENTATION OF THE tained, one from the other, by dilatations and translations. In
FEYNMAN-KAC, FORMULA modern terminology, this has to do with the fact that the

; ; ; ; riginal Haar wavelet basis is a multiresolution analysis of
o e e B B ot aan ALA(10.1) organized mayersindexed byk 26], If we dis-

: : : %-U/2 the Schauder functions make up a
connection between the discrete path integral methods arf§92rd the factor , der 1L p
the Wiener-Fourier path integral techniq[@3]. However, ~Pyramidal structure as, shown in Fig. 2. Ltk
strictly speaking, the Wiener-Fourier sequence of approxima=1:2: - - - =12, ... { } be ii.d. standard normal vari-
tions is not equivalent to any discretization scheme. That isables, and defin¥,(u,a)=0 and
for anyn, there is no sequence of short-time approximations
which by Trotter composition would generate thin-order _
Wiener-Fourier approximation. A more precise statement of Yi(u,a)= E A, iFi,j(u).
this assertion is given at the end of Sec. Il B. Then, a natural =1
guestion arises: Is there any random series for which at Ieajiwen by the Ito-Nisio theorem
a particular subsequence can be thought of as a DPI method '

The answer is positive and is furnished by thévye o
g:ri%sg;glski random series construction of the Brownian BS(§)= 2 Yk(u,g) (19)
. k=1

k-1
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1.0 define thesupportof the functionF, ; as the set supp ;)
={ue[0,1]:F, ;(u)#0}. Moreover, for p=<2X let I
3 ={(I,j):1=k+1,1<j=<2',suppf, ;) C[up_1,up,]} and de-
< fine
& 0.5 A N I
:'J” \\ ,/ _
~ N / \ Wy (u, ):(lgl a iFj(u).
J)€lp
0.0 , Then a little thought and the use of the Ito-Nisio theorem
00 (Zf 1.0 shows thatWy(u,a) is a Brownian bridge on the interval

[up—1,uUp] of variance 1/2 In addition, if p;# p,, then the
Brownian bridgeswpl(u,a) andez(u,a) are independent,
because they are functions of the independent Gaussian ran-
is equal in distribution to a standard Brownian bridge, angdom variablega, ;} with (I,j) el and (,j)ely,, respec-
the convergence of the right hand side random series is atively, and the sets of indicelqJl andlpz are disjoint. It is

most surely uniform. convenient to denote b, the conditional expectation over

Let us now define the primitive, partial averaged, and rethe random variableg, ; with (1,j) el,. Then, we have
weighted LCPI methods, which are the standard techniques '

that can be derived from a series representdtic8]. They _ 2 _
will be denoted in the following discussion by the acronyms Bj(a)= >, Wy(u,a)
Pr-LCPI, PA-LCPI, and RW-LCPI, respectively. The p=1
nth-order Pr-LCPI term is obtained by approximating thegnd
Brownian bridge by the»-dimensional process

FIG. 2. A plot of the renormalized Schauder functions for the
layersk=1, 2, and 3 showing the pyramidal structure.

2k 2k
_ & _d F[B"(a)?]= >, E[Wy(u,a)2]= >, E[W,(u,a)?].
si@)=2, Yi(u.a)+ 2 asnFea(U), [ : pzl Wplua)d le ol Wo ](21)

wherek andj are unique numbers such that25+j—1, However, one computes

with k=0 and 1<j=<2X. However, it appears natural to uti- u(1—20), 0=u<2-

lize only the subsequence of the form2X—1 with k=0, 2 —FETW.(u.a)?]=
corresponding tk complete layers, and from now on we Vot =Ea[Wa(u,a)7] 0, otherwise
shall restrict our attention to this subsequence, for which (22
_k - and then by translation
n
(2)=2, Yi(u,a). (20 —
S = Yo o(W=E[Wy(u,a)%]= v, [u—(p—1)/2<]. (23
Using the notation introduced in R¢fl3], we denote the Clearly, the functionSyﬁ’p(u) havedisjoint support. Finally,
tail of the serieg19) by Eqg. (21) becomes
) 2k
Bi(a)= 2 Yi(ua). Faw=0"2 72 ,(u), (24)
I=k+1 p=1 '

To define the PA-LCPI method, besides the s(f), we  which concludes the definition of the PA-LCPI method.

need to evaluate The reweighted technique is yet another way of improv-

ing the convergence of the primitive method. It has the ad-

_ vantage that it does not require the evaluation of the Gauss-
T(u=0%EB(a)?]=0® > > F;w ian transform of the potential. As discussed in R&B], the

S main idea is to simulate the effect of the partial averaging

This quantity must be computed explicitly because it entersnethod by replacing the tail seri&(a) in the full series

the final PA-LCPI formula by means of the “effective” po- expansion by a collection of random variables

tential {RU(b1, ... brig)to<u=1 defined over an

(n+q)-dimensional probability spaceq(is a small integer

w o1

— _ 1 2 that does not depend upaon. We ask thati) the variance at
Vun(¥)= fR \/mex B 21'2(u) V(x+2z)dz the pointu of Rj(by, ... by.q), denoted byl'/2(u), be as
close as possible tol“ﬁ(u) and (ii) the variables
For more information, the reader is referred to Sec. Ill ofSj(ay, ... ,a,) andRj(by, ... b, 4) be independent and
Ref.[13]. For allI=k+1 and l=j<2', the functionsF ; their sum have a joint distribution as close to a Brownian
are zero on the points,=p/2“ with p=0,1,...,%. Letus bridge as possible. One candidate for our approach is
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1.0 B. Properties of the Levy-Ciesielski path integral method

As announced in the beginning of the section, the LCPI
method forn=2%—1 is virtually a reformulation of the dis-
crete path integral method with appropriate short-time ap-

0.51 /{" ':",'\ proximations. This is shown by the following result.
hY / \ Theorem 2If n=2%—1, then the following relations hold
N / true:
N\ /7 \ The Trotter theorem
\ V4
0.0 Y/ \
00 (Zf 1o p(x,X’;B)=f dxg- -+ | dx,
R R
FIG. 3. A plot of the functions used in the reweighted LCPI B

technique of order 2. Note that the little tents of the laker3 Xp| X, X1 _) .. -p(Xn,x’;— .
were replaced by “little domes.” n+l ntl

R(by, . .. ,bn)=EBii‘prp(u), whereb,, ... b, are i.i.d. If M stands for any of the LCPI methods, then
standard normal random variables. Conditi@n above is
realized in the Ito-Nisio theorem by ensuring that the collec-
tion {F ;(u),wp(u)} with 1<I<k, 1<j<2'"!, and I<p
<n+q is orthogonal, and we shall look for such a collec-
tion. Here,w,(u) is the derivative of(},(u) and is not re-
quired to be normalized.

As opposed to the Wiener-Fourier series, for thenl-e
Ciesielski series it is possible to enforce the condition
exactly. The analysis done for the partial averaging metho
showed that we can represeﬁﬁ(u) as the sum of ¥=n
+1 functions ofdisjoint support, and which can be obtained

poxie)= [ ax - [ ax

X po | X Xg; '

'n+1

— . .. M
n+1 p°<X“’X

here the short-time approximatiom%"(xn,x’;ﬁ) are de-
ned as follows:

P ’.
one from the other by translation. Intuitively, we must set po (XX B) —ex —,BJIV(er(x’—x)u)du
g=1 and replace the "2Haar functions making up thk pip(X,X";B) 0 '
+1 layer by
PA ’.
d po (X.X";B) jl—
=— —(p—1)/24. ———=exp — Vi o(X+ (X' —x)u)dut,
wp(u) du'yn[u (p—1)/27] pr(X,X,;B) B o u,O( ( )
It is easy to notice that the functions,(u) are orthogonal
among themselves because they have disjoint support. More-
over, it is not difficult to see that the Haar functiofig(u) RW, .
are constant in the intervalau, ,,up] for all I<k and, po (X,x";B) :f dz(zﬂ_)fllzesz/Z
therefore, they are orthogonal on thg(u) functions be- prp(X,X"; B) R

cause

1 Xp Xex;x(—ﬁflwxnt(x’—x)u
f wp(u)du= f 0p(U)dU= y31(1/29 = 7,4(0) =0. 0

0 Xp—1

In consequence, the-order RW-LCPI approximation uses

+zF0(u))du) ,
the series

respectively.

Proof. We only prove the first point of the theorem. It is
not difficult to see that the Trotter theorem is in fact a part of
the latter case withJ (x,x"; 8)=pM(x,x"; 8) =p(x,x"; B).
for its implementation[It is customary to define the approxi- As such, the second point follows by arguments similar to
mation order by the dimensionality of the underlying prob-the first one and is left to the reader.
ability space. We shall not apply this rule in the present paper Let us remember that for al=k+1 and 1<j<2', the
in order to keep the unity of the exposition. The squares ofunctions F, ;(u) are zero on the point5|p=p/2k with p

K 2k
Sl(a)= ;1 Y (u,a)+ pzl A 1p¥np(l) (25

the functionsy,, ,(u) are given by the relatio(23).] A look

at Fig 3 shows that the-order RW-LCPI method is identical
to the 2n+1 order Pr-LCPI, except for the replacement of the serieg20). For this proof, it is important to notice that
the last layer of function&, . ; ,(u) with y, ,(u).

=0,...,% This means that the joint distribution of the
Brownian bridge at these points isiquely determined by

the inverse result is also true: knowledge of the joint distri-
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bution of the pointsu, with p=0, ...,2 uniquely deter- W,(u,a). Using this information together with the joint dis-
mines the serie0) because the latter Imear in the inter-  tribution density for the random variables(up)+ch° ,
P

vals [up—1,up]. It follows that the variables, are inde-  hich is given by the formul&10) as shown in the preceding
pendent of the displaced and rescaled Brownian bridgesection, one computes

P2(X' —X)E exp{ —BfolV(Xr(U)+UBB)dU] =py2(x'—X)E exp{ —,BDZO fupHV(xr(u)JrchS)du]
=0 Ju,

n
:jdxl...fdxnn
R R p=0
Up+1
xexp[—ﬁf \%
Up

n
=f dx;- -+ | dx, ][ {p”_z(xpﬂ—xp)ﬂij
R R p=0

2
p#;T(Xp+l__Xp)Ep

X+M(x —x)+aW(u_)
ARTRVETES

o

n+1

o _
Xp+ U(Xpr1—Xp) + ﬁBﬁ(a))du} l

B [t
X -
exp{ ] 0V

which proves the first point of the theorem. The latter fol- In a related situation, the partial averaging method as spe-
lows by a similar line of thought: for instance, the result for cialized for the Wiener-Fourier series representation was
the primitive method is obtained by settiwp(u,g)zo in  used to treat the polaron problem by Alexandrou, Fleischer,
the previous formula. m a_md Rosen_felde[GZ]._Later, the DPI formulqtlon of the_ par-
From the theoretical point of view, the importance of i@l averaging technique was applied by Titantah, Pierleoni,
Theorem 2 consists of the fact that it establishes a direcgnd Ciuchil33] for the same polaron problem and regarded

connection between the random series and the discrete pa\?ﬁw%ee(??r?énr:; dgrstﬁg?ra}&aeﬁﬂén:ﬂﬂﬁiggg nggrivevse rza\r/s:;gcr):-]_
integral techniques, even if only for the=2%—1 subse- 9 P

. L tations that may enter the Feynman-Kammula, there are an
guence. As such, we naotice that the primitive result was em Y Y ’

ployed by Makri and Mille27,28 and by Mielke and Tru- infinite number of ways in which the partial averaging idea

can be implemented. The Wiener-Fourier and thevyte
hlar [11] as the ZOP-DPI(zero order propagator DPI ciesielski series representations as well as the related DPI

method. The latter authors found tha’g the asymptptic convelimplementation are only some instand@dthough perhaps
gence of the method wa®(1/n). This result is in good the most important ongs
agreement with the present analysis because the primitive |n Sec. Il C, we promised that we would find a quick way
Levy-Ciesielski method cannot exceed the convergence ra® compute the current paths for the standard DPI methods
of the most rapidly convergent series, the Wiener-Fourieby means of the Ley-Ciesielski series representation. For
series, which behaves asymptotically@gl/n) [13]. the LCPI formulation, it is straightforward to notice that the
The partial averaging result is not new either. The DPIcomputational time necessary to compute the current path at
formulation was used by Kole and De Ra¢@B] to treat a pointu is proportional tok=log,(n+1) for the Pr-LCPI
systems with negative Coulombic singularities, for which theand PA-LCPI methods and-ilog,(n+1) for the RW-LCPI
nonaveraged methods are known to be ill behaved. Howevemethod, respectively. This is so because given a pgitte
Kole and De Raedt were not aware of the fact that they wer@nly Schauder function from the laykthat is nonzero at the
using the partial averaging method in a special setting an@ointuis F| ;(u) with j=[2'"*u]+ 1, where{x] denotes the
regarded their approach as a separate method. It has belegral part ofx. For the RW-LCPI method, we have, in
shown in a mathematically rigorous way that the partial av-2ddition, that the only functiory, ;(u) which is nonzero at
eraging method is convergent for such potentials at least 48€ pointu is that withj=[2*u]+1. In fact, going back to
far as the pointwise density matrix, the partition function,the proof of Theorem 2, we remember that the joint distribu-
and related integral expressions are concefi@, for all  tion of the pointsu, with p=0, . .., 2 uniquely determines
series representations of the Feynman-f@enula. There-  the series20), because, in a more mathematical notation, we
fore, Theorem 2 can be used to give a mathematically rigorbave
ous proof of the Kole and De Raedt result, which conversely K
can be _thought of as an argument demonstrating the desirable s (g): BS (g): E Y)(up a) Vi<p<n. (26
properties of the partial averaging strategy. P P =1

026124-9



CRISTIAN PREDESCU AND J. D. DOLL PHYSICAL REVIEW B7, 026124 (2003

Equation(26) allows us to write the following special form The following theorem, whose proof is left to the reader,

for Eq. (16): provides the necessary and sufficient conditions for an
n-order term of an arbitrary series to admit a particular
E{EOWG o (Ug)s o W (up))F=E{F (% (uy) m-order DPI representation.
_ _ Theorem 3Let
+0${]1(a), . ,xr(un)+aS[]n(a))}
n
k 271 20— 2 2
1 FAw =0 u(l-u)= 2 Ay(u)
=fdal~-jdan(21-r)*“’2ex —=> > a " &k
R R 2 &~ )
k and let O=ug<u;<- - <Up<Ums1=1. Then

f Xr(Ul)"r‘O'lZl F|’[2|—1u1]+1(u1)a|][2|—1ul]+1, Ceey i .
- ]E{f(W;’X,(ul), WL (Um))
k

XXr(Un)+O'IE F|'[2I71u ]+1(Un)a| [zlflu ]+l) . (27) :E{f(xr(ul)—‘rasﬂl(g)! e er(um)_’_o-S{]m(g))}
=1 n ’ n

This proves that the standard DPI method can be implefor all f:R™—R if and only if ['3(u,) =0 for all 1<p=<m.
mented so that the number of operations necessary to com- The fact that the Wiener-Fourier representation cannot be
pute the current paths B(kn). rationalized as a DPI method should not be surprising. In-
As we said at the beginning of Sec. Ill, as opposed to theleed, we presented enough evidence in Rid] to support
n=2K—1 subsequence of the \ng-Ciesielski representation, the idea that the convergence of the partial averaging and the
no subsequence of the Wiener-Fourier representation can teweighted Wiener-Fourier path integral method®{d/n?)
rationalized as a DPI method. The precise meaning of this ifor sufficiently smooth potentials. On the other hand, the

that if analysis performed in Sec. Il suggests that we cannot expect
an asymptotic convergence of the DPI methods better than
_ 2 sin(kru) O(1/n?). In fact, as we will show in the following section,
Si@)=V 52 ac——. the n=25—1 subsequence of the PA-LCPI and RW-LCPI
methods can have at moS{1/n?) asymptotic convergence.
then there is no sequence=@y<uq, ...,Uy<U,;1=0
such that C. Convergence of the PA-DPI and of the RW-DPI methods

- In this section, we shall study the convergence of the Trot-

B W0 (U)o W (Un))} ter product formulas having as short-time approximations the

B n o= n o= partial averaging and the reweighted zero-order formulas

_E{f(xr(ul)JrUSUl(a)’ T ,x,(un)+aSun(a))} (28) given in Theorem 2. It is natural to call these methods the

. ) PA-DPI and the RW-DPI methods, respectively. In particular,

for all functions f(xy,...x,). Indeed, remembering py yirtue of Theorem 2, we obtain the asymptotic rates of
Wy (W=x(u)+oB) and  choosing f(X)=[X convergence for the subsequences2X—1 of the corre-

—x(up)]/o? for some interior point &u,<1, one com- sponding LCPI methods. To anticipate, the convergence of

putes the partition function and of the density matrix will be shown
to be O(1/n?) for both methods if the potential is smooth
E{T (W, (ug), .. ,W;r,xr(un))}:E(ng)z:Up(l—Up)- enough. More precisely, we limit our discussion to the class
of potentials introduced in Ref30], which are the Kato-
On the other hand, class potential$31] having a finite Gaussian transform. In
. . this section, a potential is called smooth if it lies in the local
E{f(x,(u1)+asﬂl(a), . ,xr(un)+asﬂn(a))} Sobolev spac&V5ARY) and if the squares of the potentials
and of the first-order derivatives have a finite Gaussian trans-
n , 2 ! |n2(k7rup) form We remind the reader that the local Sobolev space
= B[Sy (a)] ) 2 WEARY) is made up of allL (RY) functions whose first-
order distributional derivatives are alég, (RY) functions,
Clearly, the equality28) cannot hold because ie.,
n . © . d
bp(l-uy— =S, sitkmy) _ 2 sim(kmuy) f V02D [aV(x)ax|? |dx< e
7T2 K=1 k2 772 KEnt1 k2 D i=1

does not vanish on the interval (0,1). To prove this, it isfor all bounded domain® C RY. We warn the reader that the
enough to notice that the zeros of %(lm+1)wup] and  O(1/n?) convergence of the density matrix and of the parti-
S|n2[(n+2)7-rup] are strictly interlaced. tion function for this class of potentials does not automati-
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cally imply similar convergence for the energy estimators,decays to zero as fast &y 3*9).
for which additional restrictions upon the class of potentials We shall be more careful in establishing a proper bound

might be necessary. on the variance of the functiob(x,x’,;a) because this

To simplify the notation, we prove the convergence re-yjil| eventually dictate the asymptotic rate of convergence.
sults for the monodimensional case and only state the multias shown in Appendix A, we have

dimensional analogs. Let us start with the asymptotic con-
vergence of the partial averaging method. If we set . .
BT1(x.X";B)=<E[U(x,X’,3;2) = EU(x,x’, B;a)]?

_ 1 _ ’.
U(x,x’,ﬂ;a)=J V(xr(u)+chS(a))du, (29 <BT2xX58), (3D
0
where the functiong ;(x,x";8) and T,(x,x’;B) satisfy the
a little algebra shows that relation
lp(x,X"; )= p6 " (X.X"; B)| =p(X,X"; B) = p5 (X, X'; B) TO6X) = lim Ty(x,x'; 8) = lim To(x,x'; )
B—0 B—0

= pPA(x,x"; B)E{e~ FLUKX Bia) ~BU(xX' i)l _ 11

72 (1 1 u+7—2ur—|u—7]
The first equality follows from the fact that the zero-order PA B m_ofo dufo dr 2
density matrix is always smaller than the true density matrix,
according to Eq(18) of Ref.[13]. However, for3 small, we XV, (u)VO(x, (7). (32
can expand the exponential in a Taylor series in order to
establish the order of the short-time approximation. We havén particular, the inequalities

P(x.X':8) = pg (X, X'; B) Po (X X' B)=p(x.X'; B)
2 3
=po"(XX';) %E[U(X,X’,B;E)—EU(X,X’.B;E)]Z <pg"(xX'; ) 1+'87T2(X,X’:B)+0(,84)

3

+%E[U(x,x’,,B;E)—IEU(X,X’,,B;g)]?’JrO(ﬁ“) _ show that the zero-order partial averaging formula is of con-

vergence order 2. Therefore, the assertion of Makri and
Miller [27] that p5*(x,x";8) is not an order 2 short-time
approximation is wrong. Also, notice that

Notice that the term of order 1 in the Taylor expansion can-

cels, so the asymptotic_behavior is dictated by the variance of T(x,X)=
the functionU(x,x’,B;a). However, looking at the expres- '
sion(29), we see that this variance must also decay to zero as

B—0, becauser—0. The same is true for the third-order P&cause

moment, and a gradient expansion similar to that performed

. . . . — 1 1 u+7—2ur—ju—7 1
in Appendix A for the variance of the functidd(x,x’, 8;a) J’ duf dr =—,
shows that 0 0 2 12

(30

2

T IVVOOPP 33)

Trotter composing the relatiof81) n times and noticing
thatO(B*) eventually contributes a term decaying as fast as
1/n3, it is but a simple task to establish the identity

B - -
U’ Ba) —EU (X', B;a) ]

—33 S PA LB | pa ) PA , (n=))B B
2(n+1)3 jgo fu%dxlfﬂdxzpj‘l X, X1, 7 [ Po” | XaiXas oo | Pnj-a| X2 X | Ta| XaXes oy
B S iB
/. _ _PA ’. FA . PA )
=POXTB) = pn (XX ,,8)$2(n+1)3 J.ZO JRXmJRdXZPJl(szln_n+l Po’| X1 X5 o

| (39
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with the understanding thaﬁ (x,x";0)=8(x’ —x). The above inequality is valid to the order@{8*/n®). Now, notice that
in the sense of distributions, we have

lim p§ (X1 ,X2;8) Ta(X1, X3 B) = lim pg (X1 ,X2; B) Ta(Xq,Xa; B) = 8(X1— X2) T(X1,Xy).
B—0 B—0

Multiplying it by 2(n+1)?%/8% and using the previous observation, the form(@4) becomes

1B\ pa , (n—))B
’ -

n+1 pn*j*l T(Xllxl)

(n+ 1) ,zo dxapy” 1(X Ut

L2t 1)2 1B

1
XA B= oy 2 fdxlp, 1(xxl,n+1

PA ( X ,(n—))B

Pn-j-1| X n+1

T(X1,X1),

in the limit thatn is large. Again in the same limit, the Rie- can be prevented by requiring that tletassical partition
mann sum from the above expression transforms into an infunction be finite. For instance, for the case of the primitive
tegral on the interva[0,1] and combining everything we random series, Jensen’s inequality implies
obtain the following theorem.

Theorem 4We have

1 _
zPr(ﬁ)=—f dxf dP(a)
_2(n+1)? , " V2ma?lr Ja
lim ————[p(x,x";8) = pr (x.X"; )] e
noe B N n
xexp{—ﬂf \% x+02 akAk(u)>du]
~0BH| yv|2e~ (1= DBH |y \d g, (35) 0 K=t
1 _ (1
It is convenient to write Eq(35) as = \/Zwazfﬁdxfndp(a) Jo au
ﬁ2B3 é
X, X" B)=pPAx,x"; B) + —————— Xexp{— V| x+ 0, aA(u )}
p(X, X" B)~pn (X,X"; B) 2amg(nT1)? B 2 3 k(W)
X Jo (x|e” PV V|7e” (= DBM|x" )d 6. By changing the order of integration, one ends up with
(36)
1
The d-dimensional version of Theorem 4 can be formally Zy'(B)= PLGBV(X)dX=Zd(ﬂ)<w, (37)
e

obtained by replacingV V||2/m, with

which proves our assertion. The inequali®y) holds for the

reweighted methods and the standard DPI methods(ftmo

the latter techniques, one uses the condiligw; =1 and the
Finally, we turn our attention to the convergence of thediscrete analog of Jensen’s inequalitiy this paper, the con-

RW-DPI method. It was previously prové@0] that for the  dition Z(B) <o is assumed to hold any time one deals with

class of potentials considered in this section, the density mahe nonaveraged methods.

trix and the partition function of any partial averaging Going back to the asymptotic convergence problem, we

method is convergent to the correct result. However, thignay follow the reasoning for the partial averaging method,

might not be true of the primitive and the reweighted meth-provided that we interprdi’ to mean the average against the

ods, as well as of the standard DPI methods. Indeed, it i&aussian measure

known that the nonaveraged methods suffer from what is

called “classical collapse” for potentials with negative Cou-

lombic singularitieq29,34—38, for which the partial aver- _

aging method is, however, convergent. For such systems it du(z)= \/T—Tr

happens that the-order partition functions of the primitive,

reweighted, and standard DPI methods are always yet

the true quantum partition function is finite. This situation By Jensen’s inequality one proves the inequality

2
e 7z
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RW, /.
po_ X5P) J du(z)exp(—/s J Vi (W)
R 0

pep(X,X"; B) B
1
+2F0(u))du) >expr —ﬁfo JRd,u(z)

PA ’.
XV(X’(U)+ZF0(U))du] _Po (X XTA)
pip(X,X";B)

Therefore,pRY(x,x"; B)=pFA(x,x"; B). Moreover, the fol-
lowing analog of Eq(30) holds:

o (X,X;B) = po A(X,X"; B)

Bz
=p§A(X,X';,3)[?E'[U'(X,X’,B;Z)

3
—E’U’(x,x’,,B;z)]2+%]E’[U’(x,x',ﬁ;z)

—E’U’(X,X’,B;Z)]3+O(ﬁ4)],
where we now defin®’ (x,x’,8;2) =V (x,(u) +zI'y(u)). As
discussed in Appendix A, we have
BT(x,x";B)<E'TU"(x,x",B;2)—E'U"(x,x", 8;2)]
<BTy(x,x"; B), (39

where the functiong;(x,x";8) and T;(x,x’;B) satisfy the
relation

T'(%,x")=lmT{(x,x"; B)= im T5(x,x"; B)
B—0 B—0

2 1 1
= lu(1= —
mofodufodT ul-uwr(l-7

X VO ()VO(x, (7). (39

We also have

272

v
T'(X,X)=

2
am IVVOOI2

because

1 1 2
fo dufo dryu(l—u)r(1— T):a.

We leave it for the reader to rework the previous argument

for the partial averaging case and show that for larigere
have

2
lim Z(r;%l)[pﬁw(x,xtﬁ)—pﬁ‘\(x,x’;B)]

2ﬁ2

~ B4m,

1
(x|e” 1|V V| 2e~ 1~ DEHIx\d .
0
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Since?/64>1/12, the previous result demonstrates that for
n large enoughpRY(x,x"; 8)=p(x,x’;B), so that the con-
vergence of the RW-DPI is eventually from above. Combin-
ing with Theorem 4, one obtains the following

Theorem 5We have

2(n+1)2?
lim%[pu,x';ﬂ)—pﬁw(x,x';m]

N A

R —0pH 2
4m0(16 3)jo<x|e vV
x e~ (1= 9BH|x"\dg.

As for the partial averaging case, the statement of Theo-
rem 5 can be written in the short form

ﬁ2ﬁ3
"By~ pR~W(x.x": B)— ————
p(X,X":B)=py (XX ) 8mp(n+1)?

1
xJ (x|e~ 81| W V]|~ (1~ 0BH|x "yl g,
0

(40

From Theorems 4 and 5, and by using cyclic invariance, one
easily proves the following relations.
Corollary 1. We have

Z(B)—ZFPAB) 723 LRP(X;ﬁ)”VV(X)Hde

7 - 2
(B) 24mo(n+1) JRP(X?B)dX
and
ZRp) -z [ 3)
Z(B)  8my(n+1)%\16 3

| pxmIvvialZax
X

pr(x;B)dx

Observation 1We haven?/16—1/3~0.284<1/3, so one
may be tempted to say that the reweighted technique con-
verges at a faster rate than the partial averaging method.
However, as previously mentioned in the text, both the
n-order LCPI and DPI reweighted techniques actually use
2n+1 random variables to parametrize the paths. If the con-
vention of denoting the order of an approximation by the
number of variables used to parametrize the paths is obeyed,
then the constant?/16— 1/3 should be increased four times.
In this case, we havex0.284=1.134, which means that the
partial averaging is about 1.134/(1/338.4 times faster than
the reweighted technique.

Observation 2The asymptotic relative errors for the par-
tition functions shown in Corollary 1 can be evaluated during
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the Monte Carlo procedure if so desired. It is a fact estab- 0.081 ¢ 00713
lished on several occasion$3,3( that the convergence of
the partial averaging density matrix and partition functions
for all series representations is monotonically from below. In
particular, the PA-DPI subsequenoe-2¢—1 has the same 004 3 e
property since it is identical to the respective subsequence of
the PA-LCPI method. However, it might be possible that the
partition functions for the reweighted methods are monotoni-
cally decreasing from above for the=2%—1 subsequence.

In fact, Golden 37] and Thompsomn38] have shown that the © 0.07
partition function for the subsequenne=2X— 1 of the trap-

ezoidal Trotter DPI method is monotonically decreasing, and

this might be true of the RW-DPI method, too. FIG. 4. The current slopes? —c™ , (solid lineg are shown to

Let us remember that there are potentials, as, for instancepnverge to the values predicted by Theorems 4 an@dited
the potentials with negative coulombic singularities, forlines).
which the nonaveraged methods do not converge. Con-
versely, there are potentials that are smooth and boundd@r Which both the partial averaging and the reweighted DPI
from below, as, for instance/(x)=exp?*) for which the = Mmethods are convergent because the pote¥i(id) is a Kato-
nonaveraged methods are convergent to the correct resufiass potential having a finite Gaussian transform and be-
yet the partial averaging method is not convergent becauséduse Z.(B)<». The reader may easily verify that
V(x) = exp(’) does not have a finite Gaussian transform. Foll V (1/r)[[?= a?/r?**2 is locally integrable if and only it
such potentials, it is expected that Theorem 5 as well as th& 1/2. Therefore, itv<<1/2, Theorems 4 and 5 apply, and the
second part of Corollary 1 are still true. convergence of both methods@(1/n?).

We shall reinforce the conclusions of this section by veri-  On the other hand, i&=1/2, the convergence cannot be
fying Theorems 4 and 5 for the simple case of the quadrati®(1/n?) because the convergence constants-are. This
potential V(x) = myw?x?/2. Again we use atomic units and can be proved by using the additional information that the
setmy=1, w=1, andB=10. The evaluation of the-order ~ density matrix for the Kato-class potentials is continuous and
partia| averaging and reweighted e|eme|mrp§(0,ﬁ) and strictly positive. In particular, there ise>0 and 7]>0 such
pRY(0:B) is analyzed in Appendix B. As discussed in Ref. that p(x,B8)=¢€ for all r<y=<1. Therefore, looking at the

RW
n ~Cn-

C o = -0.0606
3

8 13
n

[13], for each methodV the convergence constant bounds for the partition functions given by Corollary 1, we
' have
o i POB) PR (0:B) _ o (7
M= im (n+1)2 fRSp(X,B)HVV(X)H dx=4mea fo r—eedr

: : : : 1
can be obtained _numerlcally by analyzing the asymptotic 247T€a2f rldr=+ .
slope of the equation 0
cM=(4n+2)2(n+1/2)[p(0;8)—p¥ . ,(0;:8)] We have treated this problem explicitly in order to show that
the nature of the singularities of the potential affects the rate
as a function oh. More precisely, we haveMZIimn_,ochM of convergence even if the singularities are oriented “up-
—cM | . On the other hand, with the help of the exact densityward.” Therefore, in “pushing” the Monte Carlo simulation

matrix p(x,x’; ) of the quadratic potentid39] and of the to the limits, the reader may want to actually remove these
relations(36) and (40), one computes singularities if they are physically irrelevant. He/she can do

this either by a simple truncation or by approximating the
B3 (1 singularity with a better behaved one.
cpA=ZJ dafdx,o(o,x;aﬂ)p(x,o;(l— ) B)x>=0.0713 Other prototypical examples of potentials are those hav-
o JK ing negative singularities

andcgyw= —[(372/16)— 1]cpo= — 0.0606. The plots in Fig. 1 1
4 show that indeed the current slopes—cM , converge to V(r)=-r?——, 0<a<l. (42
the corresponding values predicted by Theorems 4 and 5. To 2 re

conclude this section, we analyze how smooth realistic three-

dimensional potentials must be to fit the hypothesis of Theol0f Such potentials, the classical partition function is not

rems 4 and 5. A prototypical example is the tridimensionafinite and the reweighted_ techniqu_e does not properly con-
spherical potential verge. However, the partial averaging method is convergent

and, if @<1/2, the asymptotic convergence@§1/n?). The

1 1 findings of this section demonstrate tisamooth enouglpo-

V(r)==r2+—, 0<as<l, (41 tentials may actually be discontinuous in the three-
2 re dimensional space.
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IV. SUMMARY AND DISCUSSION and 5 of Sec. IV provide sharp estimates of the convergence
constants for the calculation of density matrix elements for
oth the partial averaged and reweighted methods. To our

terization of various path integral approaches and the explcknowledge this is the first time that such exact convergence

lr:aetlonnmoatr:h:w 'ngﬁo?snchgrusagzetéﬁﬁ;piﬁmo;rt]g? i Sconstants have been established. Beyond their intrinsic inter-
ynman approach 1S : . Y est, the knowledge of these convergence constants can be
We notice that it is difficult and unnatural to introduce the

random series representation by means of the Trotter produu ed to devise an improved numerical implementation of the
rule. Indeed, in order to show that the path integrals eynman-Kaapproach. In particular, the results of Sec. IV

indicate that the convergence constants for the reweighted
and partial az}veraged methods are related by the formula
1 — crw= —[(37°/16)— 1]cp, for all pairs of points ,x’) and
fo V(x(u)+Bg(a)du (43 for all 8>0. Because the leading terms imithus cancel,
the approach defined by the equation

are correctly defined, one utilizes the fact that, with probabil-
ity 1, the Brownian paths are continuous. This property of RW, o or. 21/ 11 PAL .
the Brownian motion is not readily available from the Trotter [,/ (y x': g)= pn (X8 +[(3m/16) ~ 1]pn (X,X": )
product rule. However, as we have shown in Sec. Il, the 372116
discrete methods can be directly derived from the Feynman- ) .
Kag formula by simply replacing the integrals given by Eq. has an asymptotic convergence better ta{a/n?), i.e.,
(43) with appropriate quadrature sums.

A central theme of the present paper has been the char

We have explored at some length two particular imple- 2(n+1)2
mentations of path integral methods: thevizeCiesielski ap- lim —————[p(x,x";8) —pp(X,x"; B)]=0.
proach and the associated DPI technique. We have consid- n—oo 3

ered primitive, partial averaged, and reweighted versions of i _ )

this methods. As discussed in Sec. Ill, theviCiesielski N fact, we believe that if the potential(x) also has a well

approach is of particular importance becausenits2— 1 behaved second derivative, the convergence order of the
H 3

subsequence can be rationalized both as a series and a®gsent method i©(1/n%).

discrete method. This dual character is valuable for severa] Finally, we note that with the help of Theorems 4 and 5,

reasons. For example, it provides a convenient and rigorod§€ asymptotic behavior of the so-calletmethod and
reformulation of Coalson’s findings linking series and dis- H-method energy estimatofsf. Sec. IV of Ref[13]) can be

crete path integral methods, and, as illustrated by (2d), examined. In particular, it should be_ possible to deduce the
suggests a means for reducing the numerical overhead assgRnvergence constants for these estimators from those of the
ciated with path construction. Using the unified frameworkcorresponding density matrix expressions. We leave a de-
the Levy-Ciesielski approach provides, we have shown that@iled analysis of such issues for future discussion.

the methods introduced by Kole and De Rafz8] for sys-

tems with negative Coulombic singularities as well as those ACKNOWLEDGMENT

introduced by Titantah, Pierleoni and Ciu¢B8] for the po- The authors acknowledge support from the National Sci-

laron problem are discrete versions of the partial averaging,-e Foundation through Grant Nos. CHE-0095053 and
approach. Furthermore, Theorem 2 of Sec. Ill suggests thgti,e_0131114.

these previous methods can be implemented in a more robust
manner using the lwy-Ciesielski series approach. APPENDIX A

We have been able to characterize the convergence prop-
erties of the partial averaging and reweighted DPI ap- Itis well known that ifA,B>0, anda=C//AB such that
proaches and, therefore, of the=2X— 1 subsequence of the |a|<1, then the following Mehler's formul&0] holds for
corresponding LCPI techniques. In this respect, Theorems 4dll f andg whose squares have finite Gaussian transforms:

1 1 x’B+y?A—2xyC
f(xo+X)9(yot+y)

_ 1
e | o] v — o -
[fg]laBc(X0,Y0) I P oy AB_C X 2 AB-C2

1 x2+y2—2xya

1 1
= dxjd — —eX
j]R R y277' J1—a? '{ 2 1—a?

l o]
5 2, ok ﬁ x| dye CCIPHGOH(Y) Fxo+ xVA)g(Yo+ Y VB). (A1)

R

f(xo+xVA)g(Yo+y\B)
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In the above, the functionsl,(x) are the normalized Her- and the variable8®’ andB? have a joint Gaussian distribu-
mite polynomials corresponding to the Gaussian weight  tion of covariances

0\2 __ o 0y2_ B
dM(X)=Le‘X2’Z. E(By =u(1—-u), KB =7(1-1),

V2

They form a complete orthonormal basis in the Hilbert space
L2(R), which is endowed with the scalar product

u+ T—2UT—|U_T|
2

and [(B%BY)=

This covariance matrix is independent of any particular rep-
_ resentation of the Brownian bridge and, therefore, can be
(¥1¢) JR¢(X)¢(X)dM(X)' computed with the help of any basis. For instance, using the
Wiener-Fourier basis, the last term of the above formula
Let us notice that according to our hypothesis, the functionseads
f(xo+xyA) and g(y,+xyB) as functions ofx are square
integrable againstix(x) and thus they in the Hilbert space 2 & sin(kwu)sin(kwr)
L2(R). E(BBY=— 2 " . (R
By repeated integration by parts, the formulal) is m
shown to be equivalent to

and the sum of the above series can be shown to equal (
+7—2ur—|u—7])/2. It is useful to define the quantities

_ * ck
[falaectxoyo) = 2 TR0 (Vo). (A2 Golu,)=0”E(BB7) and

Ad(u,7)=T5(u)T3(7)—Go(u, 7).
where, in generalf¥(x,) is thek-order derivative of
Then,

—Z21(2A) _
e f(xg+2z)dz ]EU(X,X’,,B;a)2

o= |
A( O) R \/m
Let us notice that the seri€¢Al1) can be extended to the case — fldufldff dxf d ;
a=1, too. Indeed, the last series in Hé\1) for the case 0 R Jr ©2mAg(u,7)
a=1 is nothing else but the Bessel series

1 X2T3(7) +y2T3(u) — 2xy Go(u, 7)
X ex
2 Ag(u,r)

2 (Hdf(xo™ VA))(Hdg(yo+ - VB)),
) X V(% (U) +X)V (% (1) +Y).

which is convergent to ) ) ) )
Using the expansiofA2), one may write the above inte-

gral as the sum of the series
0+ - Blgo+ B) = | T x )
copr B, o gae= S, o dreotu,n W)
The dots in the formulas above indicate the current variables. ng%(xr( ),

Next, we proceed to establish the inequali81) from

AIC. W ith the i i
Sec. llIC. We start with the identity WhereV (x) is the k-order derivative 01\/u o(X). With the

E[U(x,x’,E;E)—EU(X,X’,/%E)F help of Eq (A4), one reg)gnlzes the first term of the above
o o series to bé EU(x,x’,3;a)]?, so that Eq(A3) becomes
=BU(x,x",B;a)°—[EU(x,x",8;@)]%. (A3)

E[U(x,x’,8;2)—EU(x,x’,8;2)]?
Clearly, we have

- “ 1 r 1 e
BU(X,X", B;8) =V, g% (U)). (Ad) =2 gfo duf0 d7Go(u, 7)VEY X, (1) VI X (7)].
Moreover, (A7)
— 1 1 . S
EU(X.X' . B; 2:f d f drEv + B . Now, we make an important obse(vanon. as its elggm‘unc—
(XX, B;a) 0 . VO () +oBy) tion expansion(A6) shows,Ggy(u,7) is a positive definite

0 integral kerneL?([0,1])—L?([0,1]) and it is not difficult to
XV(x(7)+0B?), (A5)  verify that all Go(u, 7)¥ are positive definite. Therefore,
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It is not difficult to see that a8— 0, we have'3(u)—0 and
f duf d7Go(u, ) VX (u)VI(x, (7))=0 S0, o o)
for all k=1. Considering only the first term in the series N .
(A7), we obtain the inequality (X,X )_/L'mOTl(X'X :B)

E[U(x,x",B;a)—EU(x,x",B8;a)]>=BT.(x,x"; B), h? (1 1 00
o @) )
ofo duf0 d7E[B B IV (X (u)VH (X, (7).

where (A9)

To(x,x’ B)——f duf dﬂF‘[BuBT] (x (u))

To prove the second inequality in E(B1), one uses the
) inequality 1k!<1/(k—1)! and the positivity of the terms of
V3o (7). the seriegA7) to establish the inequality

M s

FUG B2~ B0 B = S, o [ au [ arGo(u, 2 W 20 0) W P
o

k=0

o(U, ﬂE Go(u, VIS D 0x (VT D(x, (7))

Joeulgure
J:d Joler UT)JdXJ ym

1 X?T'3(7)+y?T3(u) — 2xyGo(u, 7)
xXexp — =
2 Aj(u,7)

]v<1>(xr(u)+x)v<1>(xr<r)+y).

Therefore, The relations(A8), (A9), (A10), and (A11) combined
_ _ prove Eqgs.(31) and(32) from Sec. Il C. The relation$38)
E[U(x,x",B;a)—EU(x,x",B;a)1°<BT,(x,x"; B), and(39) follow by a similar reasoning and their proof is left

(A10) to the reader. We only mention that one starts with the fact
that the seriegAl) is well defined and convergent far

where =1 too, as shown in the beginning of the present appendix.
w2 r1 1
To(x,X";8)= m—f duf dTE[BﬁB?]f dxf dy APPENDIX B
00 ° o In this section, we discuss the computation of the matrix
1 1 eIement <O|e BH|O) for the quadratic potentialV(x)
X————exp, — = =myw?x?/2 by means of the standard DPI method and the
2mAo(U,7) 2 partlal averaging and the reweighted DPI methods. The den-

s s sity matrix for the quadratic potential is known analytically
X“T'g(7) +yTo(u) —2xyGy(u, 7) (see Ref[39]) and we do not reproduce it here. For a stan-
X A2(u,7) dard DPI method specified by the quadrature pointsug
o <up<---<up<upy1=1, by the incrementsé,=u; .
X VO (x, (u) + )V (X, (1) +y). —u;, and by the weightswg,wq, ... W,.1, the formula
(12) becomes

Again, asB—0 we havel'3(u)—0 and
DPl/ . o
T(ny’):;imoTz(Xix’;ﬁ) Pn (0118)_ fRXm' o fRanpazé’l(Xl)pazﬂz(XZ
—Xg)+ - pozen(xn_xn—l)pazen(xn)

2
:_:1 f du f 47 BBV, (u)VDx,(7), B
oJo 0 xexp{— o f W.X-Zdu} .
2 = .

(A11)
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Remember set x'

:(-Xl,X?, P
written in the compact form

that o?=pAa%m,. If we

n 1 1/2 o
pEP'(o,o;B)=(H ; ) f e XA2x
i=0 2706 R"

n 1/2
1 A
det —
(il_[() 277026i) (277)

where the matridA is the tridiagonal matrix defined by

~112
, (B2

1

1
+——+mew’Bw; for 1<i=n

A--:
. 0'26i_1 g 0i

and

1
Aiir1=Ai = ey for 1<i<n-—1.
i

Xn), the aboven-dimensional integral can be

PHYSICAL REVIEW B7, 026124 (2003

where the tridiagonal matriA is defined by the relations

A =2 n 1+ 0 i for 1<i

= — s

b o2 3(n+1l) or '=n

and
A =A = n 1+ 0 i for 1<i 1
. — A. = - <i<n—-1.
ii+1 i+1 0_2 6(n 1) or I=n

Finally, the zero-order reweighted density matrix has the

form
pRV(x,x"; B)=p2(x’ —x)(1+ B2h2w?/6) ~ 12

2
Mow*B
X —
exp{ 5

X2+ X' 24 xx’
3

77_2 BZﬁZwZ(X+X/)2

18 1+ %06

] : (B5)

The values of the quadrature points and the correspondinghich can be deduced by direct integration. Let us set

weights for the trapezoidal rule are well known, while for the
Gauss-Legendre quadrature scheme the reader may use the 2

routine given in Ref[20].

The zero-order partial averaging density matrix for the

guadratic potential has the explicit expression
2
Mo®
p5A<x,x';ﬁ)=paz<x'—x>exp[— "Tﬂ<x2+x'2
+xx" +0?/2)|. (B3)

Using Eq.(B3), the reader may easily deduce that the corre-

spondingn-order PA-DPI density matrix is

|’]+1 (n+1)/2 ﬂzﬁzwz
2702 ex‘{ T 12n+1)

A -1/2

pPA0;8)=

X

IBZhZQ)Z
6(n+1)2

ool 7o

where the tridiagonal matriR is defined by the relations

77n:1+

Then,

(n+1)/2 —1/2

n+1 1

RW,
0;8)=
pn ( B) 27]'0'2 7]3

n+1l  myw? 7\ 2myh 2B w?
A=2| —+ o~ A ( )L

+—__
o2 3(n+1) |16 ,2(n+1)3

for 1<i=<n and
2 20 7273, 4
Mow~ B T\ “Myh“ B w
Aiiv1=Aii1i=— ( )

n+1+
g2 6(n+1) 116 nﬁ(n+ 1)3

for 1<sisn—1.
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