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Random series and discrete path integral methods: The Le´vy-Ciesielski implementation

Cristian Predescu* and J. D. Doll
Department of Chemistry, Brown University, Providence, Rhode Island 02912

~Received 6 November 2002; published 27 February 2003!

We perform a thorough analysis of the relationship between discrete and series representation path integral
methods, which are the main numerical techniques used in connection with the Feynman-Kac¸ formula. First, an
interpretation of the so-called standard discrete path integral methods is derived by direct discretization of the
Feynman-Kac¸ formula. Second, we consider a particular random series technique based upon the Le´vy-
Ciesielski representation of the Brownian bridge and analyze its main implementations, namely the primitive,
the partial averaging, and the reweighted versions. It is shown that then52k21 subsequence of each of these
methods can also be interpreted as a discrete path integral method with appropriate short-time approximations.
We therefore establish a direct connection between the discrete and the random series approaches. In the end,
we give sharp estimates on the rates of convergence of the partial averaging and the reweighted Le´vy-
Ciesielski random series approach for sufficiently smooth potentials. The asymptotic rates of convergence are
found to beO(1/n2), in agreement with the rates of convergence of the best standard discrete path integral
techniques.
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I. INTRODUCTION

Ever since their introduction over fifty years ago, pa
integral methods have been an intense research field
physicists, chemists, and mathematicians alike, even if th
researchers have sometimes used arguments of a rathe
ferent nature. The field opend with Feynman’s observat
@1# that the time propagator of the Schro¨dinger equation can
be represented as a ‘‘sum over histories,’’ effectively givin
formula for the propagator as a limit of integrals over spa
of increasing dimension@2#. In mathematical terms, the ex
istence of this limit is problematic, though several resea
directions are known@3–6#.

In a significant development, Kac¸ noticed that the ‘‘imagi-
nary time’’ version of the formula utilized by Feynman has
definite probabilistic sense and could be interpreted as
integral of a functional of the seemingly ubiquitous Brow
ian motion@7#. Such a formula could represent the Gree
function for a certain class of diffusion processes, as,
instance, the density matrix for the Bloch equation. The e
product of their work is beautifully summarized by what
now called the Feynman-Kac¸ formula @8#

r~x,x8;b!

r f p~x,x8;b!
5E expH 2bE

0

1

V„xr~u!1sBu
0
…duJ , ~1!

where r(x,x8;b) is the density matrix for a monodimen
sional canonical system characterized by the inverse t
peratureb51/(kBT) and is made up of identical particles o
massm0 moving in the potentialV(x). The stochastic ele
ment that appears in Eq.~1!, $Bu

0 ,u>0%, is a so-called stan
dard Brownian bridge defined as follows: if$Bu ,u>0% is a
standard Brownian motion starting at zero, then the Brow
ian bridge is the stochastic process$BuuB150,0<u<1% i.e.,
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1063-651X/2003/67~2!/026124~19!/$20.00 67 0261
or
se
dif-
n

a
s

h

n

s
r
d

-

-

a Brownian motion conditioned onB150 @9#. In this paper,
we shall reserve the symbolE to denote the expected valu
~average value! of a certain random variable against the u
derlying probability measure of the Brownian bridgeBu

0 . To
complete the description of Eq.~1!, we setxr(u)5x1(x8
2x)u ~called the reference path!, s5(\2b/m0)1/2, and let
r f p(x,x8;b) denote the density matrix for a similar free pa
ticle.

Rather than directly employing Eq.~1!, chemical physi-
cist’s arguments are usually constructed around the Tro
composition rule@10# that exploits the fact that$e2bH;b
.0% is a semigroup of operators onL2(R), so that

e2(b11b2)H5e2b1He2b2H ~2!

or, in coordinate representation,

^xue2(b11b2)Hux8&5E
R
dẑ xue2b1Huz&^zue2b2Hux8&. ~3!

By writing b5(k51
n bk , repeatedly applying the Trotter rule

and choosing an adequate short-time approximation,
ends up with a sequence of integrals on spaces of increa
dimension, converging to the density matrix as max1<k<nbk
→0. Of course, this is much in the spirit of the origin
Feynman path integral approach. The methods deduce
this technique are usually called discrete path integral~DPI!
methods~see Ref.@11# and references cited therein!.

It has become apparent that the Kac¸ interpretation of Fey-
nman’s formula may, in fact, offer a valuable starting po
for the general construction of finite-dimensional approxim
tions to the density matrix. This is so because the Brown
motion is a mathematically well understood object, for whi
various constructions are known. For example, the use of
Ito-Nisio theorem@12# has led the present authors to th
development of the random series path integral methods
surprisingly general fashion@13#. This generality of the
©2003 The American Physical Society24-1
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theory allows one to identify optimality criteria and event
ally answer questions as to what the best representation
how to modify the approach in order to improve the conv
gence.

In this paper, we shall look at the relation between
Kaç interpretation of the Feynman formula and discrete p
integral methods. In the first part, we consider what we c
the standard DPI methods. We shall again show the stre
of the Kaçapproach, at least in terms of generality and ma
ematical interpretation of the formulas. In the second p
we explore the connection between the random series t
nique, as particularized for the Le´vy-Ciesielski series repre
sentation of the Brownian bridge, and certain DPI resu
from the chemical literature. While not the primary goal, w
do obtain in an effortless manner a better way of impleme
ing the latter results that feature a ‘‘built-in’’ fast sine-Fouri
transform. We shall also derive the two basic modificatio
of the Lévy-Ciesielski path integral method~LCPI!, the par-
tial averaging@13,14# and the reweighted techniques@13#,
and establish their asymptotic law of convergence. We s
gest that these results again emphasize the power of the¸
interpretation of the Feynman formula. By providing a ce
tral framework for discussion and analysis, the Kac¸ approach
significantly aids in characterizing the various methods a
in establishing their interconnections, links that otherw
would be obscured by the multitude of possible represe
tions.

II. THE STANDARD DISCRETE PATH INTEGRAL
METHOD

A. Trotter-Suzuki approach

Our definition of the standard DPI method has to do w
the particular short-time approximation that replaces the
act one in the Trotter product

~4!

We follow closely the arguments of Suzuki@15#. The Hamil-
tonian of the system can be written as a sum between
kinetic operator and the potential operator in the formH
5K1V. The coordinate representations for the two ope
tors are analytically known to be

^xue2bKux8&5r f p~x,x8;b!

and

^xue2bVux8&5e2bV(x)d~x82x!,

respectively. It is therefore natural to consider short-time
proximations that can be expressed by a finite compositio
the above density matrices. The simplest example is the t
term splitting formula

e2b(K1V)5e2bKe2bV@11O~b2!#, ~5!
02612
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which is of order 1. More generally, the order of a splittin
formula is said to bek if the relative error isO(bk11). The
motivation for this is that if

e2b(K1V)5 f k~K,V;b!@11O~bk11!#,

then

e2b(K1V)5F f kS K,V;
b

n D GnF11OS bk11

nk D G , ~6!

i.e., the error of the finaln-term Trotter product formula de
cays as fast as 1/nk. The relation~6! was actually proved by
Suzuki @16# in terms of operator norms for bounded oper
tors A andB, but such an estimation also holds forK andV
~which generally are unbounded operators; howev
e2b(K1V) is bounded for most of the potentials of physic
interest and for all positiveb).

A better splitting is offered by the three-term formula

e2b(K1V)5e2(1/2)bVe2bKe2(1/2)bV@11O~b3!#, ~7!

or that obtained by permutingV with K. These are of order 2
and go by the name of symmetrical trapezoidal Trotter sh
time approximations@15,17#. More generally, let us define
(2l 11)-term splitting formula of orderk by the expression

e2b(K1V)5e2a0bVe2b1bKe2a1bV
¯ e2blbKe2albV

3@11O~bk11!#. ~8!

Symmetry arguments suggest that for the optim
(2l 11)-term splitting formula, the sequencesa0 , . . . ,al
andb1 , . . . ,bl should bepalindromic, i.e., if the coefficients
are read left to right, they form the same numerical seque
as when they are read right to left. A look at the trapezoi
Trotter formula shows that this condition is natural, as o
has little reason to believe that anything new can be achie
by considering some arbitrarye2abVe2bKe2(12a)bV decom-
position. In fact, with the help of the Campbell-Bake
Haussdorf-Dynkin formula@18#, it can be shown that this
more general expression is an order 2 splitting only ifa
51/2 and that it is an order 1 splitting otherwise. More ge
erally, since the operatore2bH is Hermitian, it is natural and
as argued by De Raedt and De Raedt@17#, optimal to ap-
proximate it by a sequence of Hermitian operators. It
straightforward to see that then-order Trotter product~4! is
Hermitian if and only if the short-time approximation~8! is
Hermitian. In turn, this requires the palindromicity of th
$ai% and$bi% sequences.

It is not difficult to see that if( iai5p and( ibi5q, then
the n-order Trotter formula~4! converges to exp@2b(qK
1pV)#. On the other hand, the equality

e2b(qK1pV)5e2b(K1V)

holds for arbitrary potentialsV(x) if and only if q51 and
p51. Therefore, the additional constraints( iai51 and
( ibi51 must be enforced upon the sequences$ai% and$bi%.

We considered this more general problem with the ho
that by using a more advanced splitting one may improve
4-2
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asymptotic order of the Trotter product formula. Now, the
is one more restriction that we have to place on the seque
a0 ,b1 ,a1 , . . . , namely, it should be made up ofreal and
positivenumbers only. Otherwise, the short-time approxim
tions are either ill defined or, by Trotter composition, gen
ate algorithms that are numerically unstable at low tempe
tures. Unfortunately, we have the following theorem
Suzuki ~see Theorem 3 of Ref.@15#!.

Theorem 1 (Suzuki nonexistence theorem).There are no
finite length splitting formulas~8! of order 3 or more such
that the coefficientsa0 ,b1 ,a1 , . . . are all real and positive

This negative result shows that more general splitting f
mulas do not produce short-time approximations capable
improving upon the trapezoidal Trotter result, at least as
as the asymptotic order of the Trotter product rule is c
cerned. However, the product rule~4!, which uses equally
spaced time slices, does not provide the most general s
dard DPI expression. In the following section, we shall arg
that this most general expression is of the form given by
~8!, for which the Suzuki nonexistence theorem does
apply.

B. Direct quadrature of the Feynman-Kaç formula

Let us notice that the form of Eq.~8! is invariant under
the Trotter composition~4! and so it can be regarded as t
most general standard DPI approximation to the density
trix, provided that we can give a recipe for choosing t
sequencesa0 ,b1 ,a1 , . . . ,bl ,al in such a way that the cor
rect result is recovered in the limitl→`. While in the
Trotter-Suzuki approach this may seem a daunting task,
problem has an easy solution by means of the Kac¸ interpre-
-

si

02612
ce

-
-
a-
f

r-
of
r
-

n-
e
.
t

a-

he

tation of the Feynman formula. In this section, we shall d
rive a more general expression for the standard discrete
integral method simply by replacing the monodimensio
integral overu in Eq. ~1! with an approximate quadratur
sum, and then using the definition of the Brownian bridge
compute the expectation of the resulting functional. Giv
the Suzuki nonexistence theorem, it is hard to believe t
one may eventually devise a standard DPI method w
asymptotic convergenceO(1/n3) or better. However, before
one starts to investigate the validity of this conjecture, o
needs a more general statement of the standard DPI me

For obvious reasons, the random processWx,x8
s (u)

5xr(u)1sBu
0 is called a Brownian bridge of variances2

and end points (x,x8). The Feynman-Kac¸ formula can be
expressed in terms of the new process in the form

r~x,x8;b!

r f p~x,x8;b!
5E expH 2bE

0

1

V„Wx,x8
s

~u!…duJ . ~9!

A quite important property of the Brownian bridgeWx,x8
s (u)

is the joint distribution of the variables
Wx,x8

s (u1), . . . ,Wx,x8
s (un) for a given partitioning 0,u1

,•••,un,1 of the interval@0,1#. Let us set

pt~x!5
1

A2pt
e2x2/2t

and notice thatr f p(x,x8;b)5ps2(x82x). From the very
definition of the Brownian motion@19#, the aforementioned
joint distribution can be straightforwardly shown to be
, which
P$Wx,x8
s

~u1!P@x1 ,x11dx1#, . . . ,Wx,x8
s

~un!P@xn ,xn1dxn#%5ps2u1
~x12x!ps2(u22u1)~x22x1!•••ps2(un2un21)

3~xn2xn21!ps2(12un)~x82xn!/ps2~x82x!dx1•••dxn . ~10!

One may use the above joint distribution density to compute the expectations of the functionals of the Brownian bridge
are of the form

ps2~x82x!E$ f „Wx,x8
s

~u1!, . . . ,Wx,x8
s

~un!…%5E
R
dx1•••E

R
dxnf ~x1 , . . . ,xn!ps2u1

~x12x!ps2(u22u1)

3~x22x1!•••ps2(un2un21)~xn2xn21!ps2(12un)~x82xn!, ~11!
la
it
where f (x1 , . . . ,xn) is some integrablen-dimensional func-
tion. As a direct application of Eq.~11!, consider a quadra
ture scheme on the interval@0,1# specified by the points 0
5u0,u1,•••,un,un1151 and the correspondingnon-
negativeweightsw0 ,w1 , . . . ,wn11. Replacing the monodi-
mensional integral in the Feynman-Kac¸ formula ~9! by its
quadrature form, we obtain an approximation to the den
matrix of the form
ty

rn
DPI~x,x8;b!

ps~x82x!
5E expH 2b (

i 50

n11

wiV„Wx,x8
s

~ui !…duJ .

~12!

The expectation value of this formula can beexactlyreduced
to a finite-dimensional integral with the help of the formu
~11!. We call Eq.~12! the standard DPI method and expect
4-3
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to converge to the correct result for all continuous a
bounded from below potentialsV(x). In this respect, remem
ber that with probability 1 the Brownian paths are continuo
and, therefore, so isV„Wx,x8

s (u)… as a function ofu. Also
remember that by definition a quadrature scheme on@0,1# is
constructed so that it eventually integrates all continu
functions on@0,1#.

Formula ~12! can indeed be formally deduced startin
with the Trotter composition rule~2! and a carefully chosen
sequence of short-time approximations. More precisely,
i 50,1, . . . ,n, defineu i5ui 112ui . Then Eq.~12! is nothing
else but the Trotter product

e2w0bVe2u0bKe2w1bVe2u1bK
¯ e2wnbVe2unbKe2wn11bV,

~13!

which is of course of the type given by the formula~8!.
Finally, let us notice that we always have( iu i51. We also
require that( iwi51. In fact, one is not interested in relaxin
these equalities because they are the necessary and suffi
conditions to obtain the exact free particle density matrix
all levels of approximation. The reader can directly ver
this fact by assuming that the potentialV(x) in Eq. ~13! is
constant but not zero. Moreover, the additional restriction
the integration schemes to those for which the sequenceu i
and wi are palindromic is justified by the requirement th
the approximate density matrices be Hermitian.

To summarize, the advantage of Eq.~12! is the interpre-
tation for the sequencesu i5ui 112ui andwi , leading us to
a more general convergence problem: what is the best
vergence order for the standard DPI approach~12! and for
what types of quadrature schemes is it attained? As we
gested in the beginning of this section, it is very plausi
that the answer to the above question is 2 and is attained
almost allsensiblequadrature schemes. We illustrate this
studying the convergence of the diagonal matrix elem
r(0;b)5^0ue2bHu0& of an harmonic oscillator for the fol
lowing quadrature techniques: the trapezoidal rule~TT! and
the Gauss-Legendre~GL! method @20#. In both cases the
condition ( iwi51 and the palindromicity of the sequenc
u i andwi are respected. We leave it for the reader to sh
that if the trapezoidal rule is used for integration, then o
recovers the classical trapezoidal Trotter formula.

If M stands for any of the methods studied and ifaM
represents the convergence order of the corresponding m
elementrn

M(0;b), then the convergence constant is defin
by

cM5 lim
n→`

naM@r~0;b!2rn
M~0;b!#.

The above relation can be cast in the more intuitive
equivalent form

r~0;b!'rn
M~0;b!1

cM

naM
,

02612
d

s

s

r

ient
t

f

t

n-

g-
e
or

t

w
e

trix
d

t

with an appropriate definition of the symbol'. These con-
vergence orders and convergence constants can be eval
numerically as follows. For each method, we compute

an
M5~n221/4!lnF11

r4n22
M ~0;b!2r4n12

M ~0;b!

r4n12
M ~0;b!2r~0;b!

G ,

wherer4n12
M (0;b) represents the DPI approximation of o

der 4n12 for the methodM. The evaluation of the matrix
elementsr4n12

M (0;b) is discussed in Appendix B. Then, a
argued in Ref.@13#, an

M as a function ofn is asymptotically
a straight line, whose slope gives the convergence or
Therefore,aM5 limn→`an11

M 2an
M . As to the convergence

constants, they can be evaluated by studying the asymp
slopes of

cn
M5~4n12!aM~n11/2!@r4n12

M ~0;b!2r~0;b!#,

once aM is known. The computations were performed
atomic units for a particle of massm051 and for the har-
monic oscillatorV(x)5x2/2. The inverse temperature wa
b510. As shown in Fig. 1, the asymptotic convergence
der of both methods is 2. The convergence constants
found to becTT50.103 andcGL50.127, respectively. One
notices that at the temperatureb510, the trapezoidal Trotte
method is slightly faster. However forb51, one computes
cTT50.033 andcGL50.005, which indicates that for thi
temperature the Gauss-Legendre method is faster. The
clusion we draw from this analysis is thatbetter integration
schemes do not necessarily improve upon the convergenc
the standard DPI methods. Why is this so? Again the K¸
interpretation of the Feynman formula gives us an expla
tion which is not obvious from the Trotter composition rul
A famous theorem by Paley, Wiener, and Zygmund@21# says
that with probability 1 the paths of the Brownian motion a
continuous but not differentiable at every point. Therefo
V„xr(u)1Bu

0
… as a function ofu is not differentiable even if

the potentialV is. As emphasized by Presset al. @20#, higher-
order quadrature schemes do not automatically translate
better convergence, unless the integrand is well behaved
our case, there is a limit upon the rate of convergence of
quadrature schemes, which is set by the properties of
Brownian motion paths rather than by the properties of
potential, provided that the latter has a continuous first-or

FIG. 1. The current slopesan11
M 2an

M for the trapezoidal rule
~TT! and for the Gauss-Legendre~GL! quadrature method are
shown here to converge to the same value of 2.
4-4
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derivative. In conclusion, one expects that there is an int
sic limit for the convergence order of the standard DPI me
ods. Moreover, the Suzuki nonexistence theorem pred
that none of the classical quadrature formulas for equ
spaced abscissas~e.g., Simpson’s rules, Bode’s rule, etc.! are
going to improve upon the asymptotical convergence of
trapezoidal rule. This is strong evidence that the intrin
limit for the convergence order of the standard DPI meth
is 2.

C. Kinetic energy diagonalization for the standard DPI
technique

In practical applications, it is generally difficult to wor
directly with the formula~11!, because this involves a corre
lated Gaussian multidimensional distribution. As shown
Butler and Friedman@22#, this correlated distribution can b
tri

02612
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replaced with an independent one by simple algebraic
nipulations. Later, Coalson@23# used a similar technique in
order to demonstrate, on an intuitive basis, the relation
tween the discrete and the Fourier path integral methods.
two approaches mentioned above are technically differ
and in fact there are an infinite number of such transform
tions. As we shall see in this section, they are related
simple orthogonal transformations, and in Sec. III we sh
propose an approach that allows for faster numerical imp
mentations.

We begin by performing a coordinate transformation so
to diagonalize the positive definite quadratic form associa
with the kinetic operator. More precisely, let us introduce t
transformation of coordinateszn5@xn2xr(un)#/s. By using
the condition( iu i51, it is straightforward to show that th
formula ~11! becomes
E$ f „Wx,x8
s

~u1!, . . . ,Wx,x8
s

~un!…%5E
R
dz1•••E

R
dznf „z1s1xr~u1!, . . . ,zns1xr~un!…pu0

~z1!

3pu1
~z22z1!•••pun21

~zn2zn21!pun
~zn!,
be-
nti-
a
ix

lues

a
for-
s

or, in an even more compact notation,

E$ f „Wx,x8
s

~u1!, . . . ,Wx,x8
s

~un!…%

5E
R
dz1•••E

R
dzn

1

A~2p!ndet~A!
expS 2

1

2
z̄TAz̄D

3 f „z1s1xr~u1!, . . . ,zns1xr~un!…,

where the matrixA is the n-dimensional tridiagonal matrix
defined by Ai ,i51/u i11/u i 21 for 1< i<n and Ai ,i 11
5Ai 11,i521/u i for 1< i<n21.

By construction, the matrixA is symmetric and positive
definite @otherwise, the integrability of exp(2z̄TAz̄/2) would
be violated# and can be diagonalized by an orthogonal ma
S. Defining the new coordinatesȳ5STz̄ and letting$l i ;1
< i<n% be the set of then real and~strictly! positive eigen-
values ofA, we have

E$ f „Wx,x8
s

~u1!, . . . ,Wx,x8
s

~un!…%

5E
R
dy1•••E

R
dynF)

i 51

n

~2pl i !G21/2

3expS 2
1

2 (
i 51

n

l i yi
2D f S xr~u1!1s(

j 51

n

S1,j y j , . . . ,

3xr~un!1s(
j 51

n

Sn, j y j D .

Finally, settingai5l i
1/2yi , one ends up with
x

E$ f „Wx,x8
s

~u1!, . . . ,Wx,x8
s

~un!…%

5E
R
da1•••E

R
dan~2p!2n/2expS 2

1

2 (
i 51

n

ai
2D

3 f S xr~u1!1s(
j 51

n

S1,j

aj

l j
1/2

, . . . ,xr~un!

1s(
j 51

n

Sn, j

aj

l j
1/2D . ~14!

This formula is advantageous for numerical applications,
cause the integration is performed over independent ide
cally distributed ~i.i.d.! Gaussian distributions. Given
quadrature scheme, one diagonalizes the tridiagonal matrA
and tabulates the values ofSi , j and l i . For the case of
equally spaced time slices, the eigenvectors and eigenva
of the matrixA are known analytically:

Si , j5A 2

n11
sinS i j p

n11D , 1< i , j <n

and

l i54~n11!sin2F ip

2~n11!G , 1< i<n,

respectively.
Similar to the invariance of the Brownian bridge at

change of basis as shown by the Ito-Nisio theorem, the
mula ~14! is invariant to arbitrary orthogonal transformation
4-5
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of the vectorsā5(a1 , . . . ,an). Indeed, letQ be an arbitrary
n-dimensional orthogonal matrix, and consider the coor
nate transformationā85QTā. Notice that( iai

25( ia8 i
2 and

define the matrix

Ti , j5 (
k51

n
Si ,kQk, j

lk
1/2

. ~15!

Then a little algebra shows that

E$ f „Wx,x8
s

~u1!, . . . ,Wx,x8
s

~un!…%

5E
R
da1•••E

R
dan~2p!2n/2expS 2

1

2 (
i 51

n

ai
2D

3 f S xr~u1!1s(
j 51

n

T1,jaj , . . . ,xr~un!1s(
j 51

n

Tn, jaj D .

~16!

Because of the additional degrees of freedom, the
formula is more useful in practical applications than t
transformation~14!. A good part of the computational time i
spent with the evaluation of the current paths. For a mono
mensional system, one usually needs a number of opera
proportional ton2 in order to compute the vectorTā by
matrix multiplication. However, if equally spaced time slic
are used, then elements of the form( j 51

n Si , jaj /l j
1/2 from

Eq. ~14! can be computed by fast sine-Fourier transform i
number of operations proportional tonlog2(n), provided that
n52k21 with k>1 @11,24#. Equivalently, one may say tha
there must be some orthogonal matrixQ such that the asso
ciated matrixT defined by the relation~15! is a sparse matrix
with at mostk nonvanishing elements on any line. Therefo
the evaluation of the elementsTā by direct matrix multipli-
cation requires onlyO(kn) operations. In this paper, we sha
directly find such a matrixT by means of the Le´vy-Ciesielski
representation of the Brownian bridge, which is discusse
the following section@see formula~27!#.

III. THE LE´ VY-CIESIELSKI REPRESENTATION OF THE
FEYNMAN-KAÇ FORMULA

As we discussed in the preceding section, the transfor
tion ~14! was utilized by Coalson in order to establish
connection between the discrete path integral methods
the Wiener-Fourier path integral technique@23#. However,
strictly speaking, the Wiener-Fourier sequence of approxim
tions is not equivalent to any discretization scheme. Tha
for anyn, there is no sequence of short-time approximatio
which by Trotter composition would generate thenth-order
Wiener-Fourier approximation. A more precise statemen
this assertion is given at the end of Sec. III B. Then, a natu
question arises: Is there any random series for which at l
a particular subsequence can be thought of as a DPI met
The answer is positive and is furnished by the Le´vy-
Ciesielski random series construction of the Brown
bridge.
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In this section, we shall specialize the general theory
the random series representation of the Feynman-Kac¸ for-
mula @13# for the particular case of the Le´vy-Ciesielski rep-
resentation of the Brownian motion. The respective meth
will be designated by the acronym LCPI. We shall also d
rive the three associated methods: the primitive LCPI,
partial averaging LCPI, and the reweighted LCPI. Moreov
with the help of the Le´vy-Ciesielski series representation, w
shall prove the Trotter product rule for the casen52k21
and for this subsequence, we shall show that each of
above modifications of the LCPI method can be interpre
as then-order Trotter product of some appropriate short-tim
approximations. In doing so, we establish a direct connec
between the discrete and the random series path inte
techniques. As a practical application, we shall obtain
sparse matrixT of the form~15!, which requires onlyO(kn)
operations to compute the vectorTā by matrix multiplica-
tion.

A. The Lévy-Ciesielski path integral method

Some of the arguments we use in the following introdu
tion to the Lévy-Ciesielski representation of the Brownia
bridge can be found in Ref.@25#. For k51,2, . . . and j
51,2, . . . ,2k21, the Haar functionf k, j is defined by

f k, j~ t !5H 2(k21)/2, tP@~ l 21!/2k,l /2k#

22(k21)/2, tP@ l /2k,~ l 11!/2k#

0, elsewhere,

~17!

wherel 52 j 21. Together withf 0[1, these functions make
up a complete orthonormal basis inL2(@0,1#). Their primi-
tives

Fk, j~ t !5H 2(k21)/2@ t2~ l 21!/2k#, tP@~ l 21!/2k,l /2k#

2(k21)/2@~ l 11!/2k2t#, tP@ l /2k,~ l 11!/2k#

0, elsewhere
~18!

are called theSchauder functions. As McKean puts it@25#,
the Schauder functions are ‘‘little tents,’’ which can be o
tained, one from the other, by dilatations and translations
modern terminology, this has to do with the fact that t
original Haar wavelet basis is a multiresolution analysis
L2(@0,1#) organized inlayers indexed byk @26#. If we dis-
regard the factor 2(k21)/2, the Schauder functions make up
pyramidal structure as shown in Fig. 2. Let$ak, j ;k
51,2, . . . ;j 51,2, . . . ,2k21% be i.i.d. standard normal vari
ables, and defineY0(u,ā)[0 and

Yk~u,ā!5 (
j 51

2k21

ak, jFk, j~u!.

Then by the Ito-Nisio theorem,

Bu
0~ ā!5 (

k51

`

Yk~u,ā! ~19!
4-6



n
a

re
u

s
e
he

i-

e

er
-

o

m
l

,
ran-

r

v-
ad-
uss-

ing

es

an
is

he

RANDOM SERIES AND DISCRETE PATH INTEGRAL . . . PHYSICAL REVIEW E 67, 026124 ~2003!
is equal in distribution to a standard Brownian bridge, a
the convergence of the right hand side random series is
most surely uniform.

Let us now define the primitive, partial averaged, and
weighted LCPI methods, which are the standard techniq
that can be derived from a series representation@13#. They
will be denoted in the following discussion by the acronym
Pr-LCPI, PA-LCPI, and RW-LCPI, respectively. Th
nth-order Pr-LCPI term is obtained by approximating t
Brownian bridge by then-dimensional process

Su
n~ ā!5(

l 51

k

Yl~u,ā!1(
l 51

j

ak11,lFk11,l~u!,

wherek and j are unique numbers such thatn52k1 j 21,
with k>0 and 1< j <2k. However, it appears natural to ut
lize only the subsequence of the formn52k21 with k>0,
corresponding tok complete layers, and from now on w
shall restrict our attention to this subsequence, for which

Su
n~ ā!5(

l 51

k

Yl~u,ā!. ~20!

Using the notation introduced in Ref.@13#, we denote the
tail of the series~19! by

Bu
n~ ā!5 (

l 5k11

`

Yl~u,ā!.

To define the PA-LCPI method, besides the sum~20!, we
need to evaluate

Gn
2~u!5s2E@Bu

n~ ā!2#5s2 (
l 5k11

`

(
j 51

2l 21

Fl , j~u!2.

This quantity must be computed explicitly because it ent
the final PA-LCPI formula by means of the ‘‘effective’’ po
tential

V̄u,n~x!5E
R

1

A2pGn
2~u!

expF2
z2

2Gn
2~u!

GV~x1z!dz.

For more information, the reader is referred to Sec. III
Ref. @13#. For all l>k11 and 1< j <2l , the functionsFl , j
are zero on the pointsup5p/2k with p50,1, . . . ,2k. Let us

FIG. 2. A plot of the renormalized Schauder functions for t
layersk51, 2, and 3 showing the pyramidal structure.
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define thesupportof the functionFl , j as the set supp(Fl , j )
5$uP@0,1#:Fl , j (u)Þ0%. Moreover, for 1<p<2k, let I p
5$( l , j ): l>k11,1< j <2l ,supp(Fl , j ),@up21 ,up#% and de-
fine

Wp~u,ā!5 (
( l , j )PI p

al , jFl , j~u!.

Then a little thought and the use of the Ito-Nisio theore
shows thatWp(u,ā) is a Brownian bridge on the interva
@up21 ,up# of variance 1/2k. In addition, if p1Þp2, then the
Brownian bridgesWp1

(u,ā) andWp2
(u,ā) are independent

because they are functions of the independent Gaussian
dom variables$al , j% with ( l , j )PI p1

and (l , j )PI p2
, respec-

tively, and the sets of indicesI p1
and I p2

are disjoint. It is

convenient to denote byEp the conditional expectation ove
the random variablesal , j with ( l , j )PI p . Then, we have

Bu
n~ ā!5 (

p51

2k

Wp~u,ā!

and

E@Bu
n~ ā!2#5 (

p51

2k

E@Wp~u,ā!2#5 (
p51

2k

Ep@Wp~u,ā!2#.

~21!

However, one computes

gn,1
2 ~u!5E1@W1~u,ā!2#5H u~122ku!, 0<u,22k,

0, otherwise
~22!

and then by translation

gn,p
2 ~u![Ep@Wp~u,ā!2#5gn,1

2 @u2~p21!/2k#. ~23!

Clearly, the functionsgn,p
2 (u) havedisjoint support. Finally,

Eq. ~21! becomes

Gn
2~u!5s2(

p51

2k

gn,p
2 ~u!, ~24!

which concludes the definition of the PA-LCPI method.
The reweighted technique is yet another way of impro

ing the convergence of the primitive method. It has the
vantage that it does not require the evaluation of the Ga
ian transform of the potential. As discussed in Ref.@13#, the
main idea is to simulate the effect of the partial averag
method by replacing the tail seriesBu

n(ā) in the full series
expansion by a collection of random variabl
$Ru

n(b1 , . . . ,bn1q)%0<u<1 defined over an
(n1q)-dimensional probability space (q is a small integer
that does not depend uponn). We ask that~i! the variance at
the pointu of Ru

n(b1 , . . . ,bn1q), denoted byGn8
2(u), be as

close as possible toGn
2(u) and ~ii ! the variables

Su
n(a1 , . . . ,an) and Ru

n(b1 , . . . ,bn1q) be independent and
their sum have a joint distribution as close to a Browni
bridge as possible. One candidate for our approach
4-7
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Ru
n(b1 , . . . ,bn)5(p51

n1qbpVp(u), whereb1 , . . . ,bn are i.i.d.
standard normal random variables. Condition~ii ! above is
realized in the Ito-Nisio theorem by ensuring that the coll
tion $Fl , j (u),vp(u)% with 1< l<k, 1< j <2l 21, and 1<p
<n1q is orthogonal, and we shall look for such a colle
tion. Here,vp(u) is the derivative ofVp(u) and is not re-
quired to be normalized.

As opposed to the Wiener-Fourier series, for the Le´vy-
Ciesielski series it is possible to enforce the condition~i!
exactly. The analysis done for the partial averaging met
showed that we can representGn

2(u) as the sum of 2k5n
11 functions ofdisjoint support, and which can be obtaine
one from the other by translation. Intuitively, we must s
q51 and replace the 2k Haar functions making up thek
11 layer by

vp~u!5
d

du
gn@u2~p21!/2k#.

It is easy to notice that the functionsvp(u) are orthogonal
among themselves because they have disjoint support. M
over, it is not difficult to see that the Haar functionsf l , j (u)
are constant in the intervals@up21 ,up# for all l<k and,
therefore, they are orthogonal on thevp(u) functions be-
cause

E
0

1

vp~u!du5E
xp21

xp
vp~u!du5gn,1~1/2k!2gn,1~0!50.

In consequence, then-order RW-LCPI approximation use
the series

Su
n~ ā!5(

l 51

k

Yl~u,ā!1 (
p51

2k

ak11,pgn,p~u! ~25!

for its implementation.@It is customary to define the approx
mation order by the dimensionality of the underlying pro
ability space. We shall not apply this rule in the present pa
in order to keep the unity of the exposition. The squares
the functionsgn,p(u) are given by the relation~23!.# A look
at Fig 3 shows that then-order RW-LCPI method is identica
to the 2n11 order Pr-LCPI, except for the replacement
the last layer of functionsFk11,p(u) with gn,p(u).

FIG. 3. A plot of the functions used in the reweighted LC
technique of order 2. Note that the little tents of the layerk53
were replaced by ‘‘little domes.’’
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B. Properties of the Lévy-Ciesielski path integral method

As announced in the beginning of the section, the LC
method forn52k21 is virtually a reformulation of the dis-
crete path integral method with appropriate short-time
proximations. This is shown by the following result.

Theorem 2.If n52k21, then the following relations hold
true:

The Trotter theorem

r~x,x8;b!5E
R
dx1•••E

R
dxn

3rS x,x1 ;
b

n11D •••rS xn ,x8;
b

n11D .

If M stands for any of the LCPI methods, then

rn
M~x,x8;b!5E

R
dx1•••E

R
dxn

3r0
MS x,x1 ;

b

n11D •••r0
MS xn ,x8;

b

n11D ,

where the short-time approximationsr0
M(xn ,x8;b) are de-

fined as follows:

r0
Pr~x,x8;b!

r f p~x,x8;b!
5expH 2bE

0

1

V„x1~x82x!u…duJ ,

r0
PA~x,x8;b!

r f p~x,x8;b!
5expH 2bE

0

1

V̄u,0„x1~x82x!u…duJ ,

and

r0
RW~x,x8;b!

r f p~x,x8;b!
5E

R
dz~2p!21/2e2z2/2

3expH 2bE
0

1

V„x1~x82x!u

1zG0~u!…duJ ,

respectively.
Proof. We only prove the first point of the theorem. It

not difficult to see that the Trotter theorem is in fact a part
the latter case withr0

M(x,x8;b)5rn
M(x,x8;b)5r(x,x8;b).

As such, the second point follows by arguments similar
the first one and is left to the reader.

Let us remember that for alll>k11 and 1< j <2l , the
functions Fl , j (u) are zero on the pointsup5p/2k with p
50, . . . ,2k. This means that the joint distribution of th
Brownian bridge at these points isuniquelydetermined by
the series~20!. For this proof, it is important to notice tha
the inverse result is also true: knowledge of the joint dis
4-8



ge

-

g

RANDOM SERIES AND DISCRETE PATH INTEGRAL . . . PHYSICAL REVIEW E 67, 026124 ~2003!
bution of the pointsup with p50, . . . ,2k uniquely deter-
mines the series~20! because the latter islinear in the inter-
vals @up21 ,up#. It follows that the variablesBup
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Wp(u,ā). Using this information together with the joint dis
tribution density for the random variablesxr(up)1sBup

0 ,
which is given by the formula~10! as shown in the precedin
section, one computes
ps2~x82x!E expH 2bE
0

1

V„xr~u!1sBu
0
…duJ 5ps2~x82x!E expH 2b (

p50

n E
up

up11
V„xr~u!1sBu

0
…duJ

5E
R
dx1•••E

R
dxn)

p50

n Fp s2

n11
~xp112xp!Ep

3expH 2bE
up

up11
VS xp1

~u2up!

~up112up!
~xp112xp!1sWp~u,ā! DduJ G

5E
R
dx1•••E

R
dxn)

p50

n F p s2

n11
~xp112xp!E

3expH 2
b

n11E0

1

VS xp1u~xp112xp!1
s

An11
Bu

0~ ā!D duJ G ,
pe-
as
er,

-
ni,

ed
con-
en-

ea
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which proves the first point of the theorem. The latter f
lows by a similar line of thought: for instance, the result f
the primitive method is obtained by settingWp(u,ā)50 in
the previous formula. j

From the theoretical point of view, the importance
Theorem 2 consists of the fact that it establishes a di
connection between the random series and the discrete
integral techniques, even if only for then52k21 subse-
quence. As such, we notice that the primitive result was e
ployed by Makri and Miller@27,28# and by Mielke and Tru-
hlar @11# as the ZOP-DPI~zero order propagator DPI!
method. The latter authors found that the asymptotic con
gence of the method wasO(1/n). This result is in good
agreement with the present analysis because the prim
Lévy-Ciesielski method cannot exceed the convergence
of the most rapidly convergent series, the Wiener-Fou
series, which behaves asymptotically asO(1/n) @13#.

The partial averaging result is not new either. The D
formulation was used by Kole and De Raedt@29# to treat
systems with negative Coulombic singularities, for which t
nonaveraged methods are known to be ill behaved. Howe
Kole and De Raedt were not aware of the fact that they w
using the partial averaging method in a special setting
regarded their approach as a separate method. It has
shown in a mathematically rigorous way that the partial
eraging method is convergent for such potentials at leas
far as the pointwise density matrix, the partition functio
and related integral expressions are concerned@30#, for all
series representations of the Feynman-Kac¸ formula. There-
fore, Theorem 2 can be used to give a mathematically rig
ous proof of the Kole and De Raedt result, which convers
can be thought of as an argument demonstrating the desi
properties of the partial averaging strategy.
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In a related situation, the partial averaging method as s
cialized for the Wiener-Fourier series representation w
used to treat the polaron problem by Alexandrou, Fleisch
and Rosenfelder@32#. Later, the DPI formulation of the par
tial averaging technique was applied by Titantah, Pierleo
and Ciuchi@33# for the same polaron problem and regard
once again as a separate technique. We hope we have
vinced the reader that given the multitude of series repres
tations that may enter the Feynman-Kac¸ formula, there are an
infinite number of ways in which the partial averaging id
can be implemented. The Wiener-Fourier and the Le´vy-
Ciesielski series representations as well as the related
implementation are only some instances~although perhaps
the most important ones!.

In Sec. II C, we promised that we would find a quick wa
to compute the current paths for the standard DPI meth
by means of the Le´vy-Ciesielski series representation. F
the LCPI formulation, it is straightforward to notice that th
computational time necessary to compute the current pat
a point u is proportional tok5 log2(n11) for the Pr-LCPI
and PA-LCPI methods and 11 log2(n11) for the RW-LCPI
method, respectively. This is so because given a pointu, the
only Schauder function from the layerl that is nonzero at the
point u is Fl , j (u) with j 5@2l 21u#11, where@x# denotes the
integral part ofx. For the RW-LCPI method, we have, i
addition, that the only functiongn, j (u) which is nonzero at
the pointu is that with j 5@2ku#11. In fact, going back to
the proof of Theorem 2, we remember that the joint distrib
tion of the pointsup with p50, . . . ,2k uniquely determines
the series~20!, because, in a more mathematical notation,
have

Sup

n ~ ā!5Bup

0 ~ ā!5(
l 51

k

Yl~up ,ā!, ;1<p<n. ~26!
4-9
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Equation~26! allows us to write the following special form
for Eq. ~16!:

E$ f „Wx,x8
s

~u1!, . . . ,Wx,x8
s

~un!…%5E$ f „xr~u1!

1sSu1

n ~ ā!, . . . ,xr~un!1sSun

n ~ ā!…%

5E
R
da1•••E

R
dan~2p!2n/2expS 2

1

2 (
l 51

k

(
i 51

2l 21

al ,i
2 D

3 f S xr~u1!1s(
l 51

k

Fl ,[2l 21u1] 11~u1!al ,[2l 21u1] 11 , . . . ,

3xr~un!1s(
l 51

k

Fl ,[2l 21un] 11~un!al ,[2l 21un] 11D . ~27!

This proves that the standard DPI method can be im
mented so that the number of operations necessary to c
pute the current paths isO(kn).

As we said at the beginning of Sec. III, as opposed to
n52k21 subsequence of the Le´vy-Ciesielski representation
no subsequence of the Wiener-Fourier representation ca
rationalized as a DPI method. The precise meaning of th
that if

Su
n~ ā!5A 2

p2(k51

n

ak

sin~kpu!

k
,

then there is no sequence 05u0,u1 , . . . ,un,un1150
such that

E$ f „Wx,x8
s

~u1!, . . . ,Wx,x8
s

~un!…%

5E$ f „xr~u1!1sSu1

n ~ ā!, . . . ,xr~un!1sSun

n ~ ā!…% ~28!

for all functions f (x1 , . . . ,xn). Indeed, remembering
Wx,x8

s (u)5xr(u)1sBu
0 and choosing f (x)5@x

2xr(up)#/s2 for some interior point 0,up,1, one com-
putes

E$ f „Wx,x8
s

~u1!, . . . ,Wx,x8
s

~un!…%5E~Bup

0 !25up~12up!.

On the other hand,

E$ f „xr~u1!1sSu1

n ~ ā!, . . . ,xr~un!1sSun

n ~ ā!…%

5E@Sup

n ~ ā!#2 5
2

p2 (
k51

n
sin2~kpup!

k2
.

Clearly, the equality~28! cannot hold because

up~12up!2
2

p2 (
k51

n
sin2~kpup!

k2
5

2

p2 (
k5n11

`
sin2~kpup!

k2

does not vanish on the interval (0,1). To prove this, it
enough to notice that the zeros of sin2@(n11)pup# and
sin2@(n12)pup# are strictly interlaced.
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The following theorem, whose proof is left to the read
provides the necessary and sufficient conditions for
n-order term of an arbitrary series to admit a particu
m-order DPI representation.

Theorem 3.Let

Gn
2~u!5s2Fu~12u!2 (

k51

n

Lk~u!2G
and let 05u0,u1,•••,um,um1151. Then

E$ f „Wx,x8
s

~u1!, . . . ,Wx,x8
s

~um!…%

5E$ f „xr~u1!1sSu1

n ~ ā!, . . . ,xr~um!1sSum

n ~ ā!…%

for all f :Rm→R if and only if Gn
2(up)50 for all 1<p<m.

The fact that the Wiener-Fourier representation canno
rationalized as a DPI method should not be surprising.
deed, we presented enough evidence in Ref.@13# to support
the idea that the convergence of the partial averaging and
reweighted Wiener-Fourier path integral methods isO(1/n3)
for sufficiently smooth potentials. On the other hand, t
analysis performed in Sec. II suggests that we cannot ex
an asymptotic convergence of the DPI methods better t
O(1/n2). In fact, as we will show in the following section
the n52k21 subsequence of the PA-LCPI and RW-LC
methods can have at mostO(1/n2) asymptotic convergence

C. Convergence of the PA-DPI and of the RW-DPI methods

In this section, we shall study the convergence of the Tr
ter product formulas having as short-time approximations
partial averaging and the reweighted zero-order formu
given in Theorem 2. It is natural to call these methods
PA-DPI and the RW-DPI methods, respectively. In particul
by virtue of Theorem 2, we obtain the asymptotic rates
convergence for the subsequencesn52k21 of the corre-
sponding LCPI methods. To anticipate, the convergence
the partition function and of the density matrix will be show
to be O(1/n2) for both methods if the potential is smoot
enough. More precisely, we limit our discussion to the cla
of potentials introduced in Ref.@30#, which are the Kato-
class potentials@31# having a finite Gaussian transform. I
this section, a potential is called smooth if it lies in the loc
Sobolev spaceWloc

1,2(Rd) and if the squares of the potentia
and of the first-order derivatives have a finite Gaussian tra
form. We remind the reader that the local Sobolev sp
Wloc

1,2(Rd) is made up of allL loc
2 (Rd) functions whose first-

order distributional derivatives are alsoL loc
2 (Rd) functions,

i.e.,

E
D
FV~x!21(

i 51

d

u]V~x!/]xi u2Gdx,`

for all bounded domainsD,Rd. We warn the reader that th
O(1/n2) convergence of the density matrix and of the pa
tion function for this class of potentials does not automa
4-10
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cally imply similar convergence for the energy estimato
for which additional restrictions upon the class of potenti
might be necessary.

To simplify the notation, we prove the convergence
sults for the monodimensional case and only state the m
dimensional analogs. Let us start with the asymptotic c
vergence of the partial averaging method. If we set

U~x,x8,b;ā!5E
0

1

V„xr~u!1sBu
0~ ā!…du, ~29!

a little algebra shows that

ur~x,x8;b!2r0
PA~x,x8;b!u5r~x,x8;b!2r0

PA~x,x8;b!

5r0
PA~x,x8;b!E$e2b[U(x,x8,b;ā)2EU(x,x8,b;ā)]21%.

The first equality follows from the fact that the zero-order P
density matrix is always smaller than the true density mat
according to Eq.~18! of Ref. @13#. However, forb small, we
can expand the exponential in a Taylor series in order
establish the order of the short-time approximation. We h

r~x,x8;b!2r0
PA~x,x8;b!

5r0
PA~x,x8;b!H b2

2
E@U~x,x8,b;ā!2EU~x,x8,b;ā!#2

1
b3

3!
E@U~x,x8,b;ā!2EU~x,x8,b;ā!#31O~b4!J .

~30!

Notice that the term of order 1 in the Taylor expansion c
cels, so the asymptotic behavior is dictated by the varianc
the functionU(x,x8,b;ā). However, looking at the expres
sion~29!, we see that this variance must also decay to zer
b→0, becauses→0. The same is true for the third-orde
moment, and a gradient expansion similar to that perform
in Appendix A for the variance of the functionU(x,x8,b;ā)
shows that

b3

3!
E@U~x,x8,b;ā!2EU~x,x8,b;ā!#3
02612
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decays to zero as fast asO(b4.5).
We shall be more careful in establishing a proper bou

on the variance of the functionU(x,x8,b;ā) because this
will eventually dictate the asymptotic rate of convergen
As shown in Appendix A, we have

bT1~x,x8;b!<E@U~x,x8,b;ā!2EU~x,x8,b;ā!#2

<bT2~x,x8;b!, ~31!

where the functionsT1(x,x8;b) andT2(x,x8;b) satisfy the
relation

T~x,x8!5 lim
b→0

T1~x,x8;b!5 lim
b→0

T2~x,x8;b!

5
\2

m0
E

0

1

duE
0

1

dt
u1t22ut2uu2tu

2

3V(1)
„xr~u!…V(1)

„xr~t!…. ~32!

In particular, the inequalities

r0
PA~x,x8;b!<r~x,x8;b!

<r0
PA~x,x8;b!F11

b3

2
T2~x,x8;b!1O~b4!G

show that the zero-order partial averaging formula is of c
vergence order 2. Therefore, the assertion of Makri a
Miller @27# that r0

PA(x,x8;b) is not an order 2 short-time
approximation is wrong. Also, notice that

T~x,x!5
\2

12m0
i“V~x!i2, ~33!

because

E
0

1

duE
0

1

dt
u1t22ut2uu2tu

2
5

1

12
.

Trotter composing the relation~31! n times and noticing
that O(b4) eventually contributes a term decaying as fast
1/n3, it is but a simple task to establish the identity
b3

2~n11!3 (
j 50

n E
R
dx1E

R
dx2r j 21

PA S x,x1 ;
j b

n11D r0
PAS x1 ,x2 ;

b

n11D rn2 j 21
PA S x2 ,x8;

~n2 j !b

n11 DT1S x1 ,x2 ;
b

n11D
<r~x,x8;b!2rn

PA~x,x8;b!<
b3

2~n11!3 (
j 50

n E
R
dx1E

R
dx2r j 21

PA S x,x1 ;
j b

n11D r0
PAS x1 ,x2 ;

b

n11D
3rn2 j 21

PA S x2 ,x8;
~n2 j !b

n11 DT2S x1 ,x2 ;
b

n11D , ~34!
4-11
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with the understanding thatr21
PA(x,x8;0)5d(x82x). The above inequality is valid to the order ofO(b4/n3). Now, notice that

in the sense of distributions, we have

lim
b→0

r0
PA~x1 ,x2 ;b!T1~x1 ,x2 ;b!5 lim

b→0
r0

PA~x1 ,x2 ;b!T2~x1 ,x2 ;b!5d~x12x2!T~x1 ,x1!.

Multiplying it by 2(n11)2/b3 and using the previous observation, the formula~34! becomes

1

~n11! (
j 50

n E
R
dx1r j 21

PA S x,x1 ;
j b

n11D rn2 j 21
PA S x1 ,x8;

~n2 j !b

n11 DT~x1 ,x1!

<
2~n11!2

b3
@r~x,x8;b!2rn

PA~x,x8;b!#<
1

~n11! (
j 50

n E
R
dx1r j 21

PA S x,x1 ;
j b

n11D rn2 j 21
PA S x1 ,x8;

~n2 j !b

n11 DT~x1 ,x1!,
-
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in the limit thatn is large. Again in the same limit, the Rie
mann sum from the above expression transforms into an
tegral on the interval@0,1# and combining everything we
obtain the following theorem.

Theorem 4.We have

lim
n→`

2~n11!2

b3
@r~x,x8;b!2rn

PA~x,x8;b!#

5
\2

12m0
E

0

1

^xue2ubHi“Vi2e2(12u)bHux8&du. ~35!

It is convenient to write Eq.~35! as

r~x,x8;b!'rn
PA~x,x8;b!1

\2b3

24m0~n11!2

3E
0

1

^xue2ubHi“Vi2e2(12u)bHux8&du.

~36!

The d-dimensional version of Theorem 4 can be forma
obtained by replacingi“Vi2/m0 with

(
i 51

d
1

m0,i
F ]

]xi
V~x1 , . . . ,xd!G2

.

Finally, we turn our attention to the convergence of t
RW-DPI method. It was previously proved@30# that for the
class of potentials considered in this section, the density
trix and the partition function of any partial averagin
method is convergent to the correct result. However,
might not be true of the primitive and the reweighted me
ods, as well as of the standard DPI methods. Indeed,
known that the nonaveraged methods suffer from wha
called ‘‘classical collapse’’ for potentials with negative Co
lombic singularities@29,34–36#, for which the partial aver-
aging method is, however, convergent. For such system
happens that then-order partition functions of the primitive
reweighted, and standard DPI methods are always1`, yet
the true quantum partition function is finite. This situatio
02612
n-

a-

is
-
is
is

it

can be prevented by requiring that theclassical partition
function be finite. For instance, for the case of the primiti
random series, Jensen’s inequality implies

Zn
Pr~b!5

1

A2ps2ER
dxE

V
dP~ ā!

3expH 2bE
0

1

VS x1s(
k51

n

akLk~u!D duJ
<

1

A2ps2ER
dxE

V
dP~ ā!E

0

1

du

3expH 2bVS x1s(
k51

n

akLk~u!D J .

By changing the order of integration, one ends up with

Zn
Pr~b!<

1

A2ps2ER
e2bV(x)dx5Zcl~b!,`, ~37!

which proves our assertion. The inequality~37! holds for the
reweighted methods and the standard DPI methods, too~for
the latter techniques, one uses the condition( iwi51 and the
discrete analog of Jensen’s inequality!. In this paper, the con-
dition Zcl(b),` is assumed to hold any time one deals w
the nonaveraged methods.

Going back to the asymptotic convergence problem,
may follow the reasoning for the partial averaging metho
provided that we interpretE8 to mean the average against th
Gaussian measure

dm~z!5
1

A2p
e2z2/2dz.

By Jensen’s inequality one proves the inequality
4-12
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r0
RW~x,x8;b!

r f p~x,x8;b!
5E

R
dm~z!expH 2bE

0

1

V„xr~u!

1zG0~u!…duJ >expH 2bE
0

1E
R
dm~z!

3V„xr~u!1zG0~u!…duJ 5
r0

PA~x,x8;b!

r f p~x,x8;b!
.

Therefore,rn
RW(x,x8;b)>rn

PA(x,x8;b). Moreover, the fol-
lowing analog of Eq.~30! holds:

r0
RW~x,x8;b!2r0

PA~x,x8;b!

5r0
PA~x,x8;b!H b2

2
E8@U8~x,x8,b;z!

2E8U8~x,x8,b;z!#21
b3

3!
E8@U8~x,x8,b;z!

2E8U8~x,x8,b;z!#31O~b4!J ,

where we now defineU8(x,x8,b;z)5V„xr(u)1zG0(u)…. As
discussed in Appendix A, we have

bT18~x,x8;b!<E8@U8~x,x8,b;z!2E8U8~x,x8,b;z!#2

<bT28~x,x8;b!, ~38!

where the functionsT18(x,x8;b) andT28(x,x8;b) satisfy the
relation

T8~x,x8!5 lim
b→0

T18~x,x8;b!5 lim
b→0

T28~x,x8;b!

5
\2

m0
E

0

1

duE
0

1

dtAu~12u!t~12t!

3V(1)
„xr~u!…V(1)

„xr~t!…. ~39!

We also have

T8~x,x!5
p2\2

64m0
i“V~x!i2,

because

E
0

1

duE
0

1

dtAu~12u!t~12t!5
p2

64
.

We leave it for the reader to rework the previous argume
for the partial averaging case and show that for largen, we
have

lim
n→`

2~n11!2

b3
@rn

RW~x,x8;b!2rn
PA~x,x8;b!#

5
p2\2

64m0
E

0

1

^xue2ubHi¹Vi2e2(12u)bHux8&du.
02612
ts

Sincep2/64.1/12, the previous result demonstrates that
n large enoughrn

RW(x,x8;b)>r(x,x8;b), so that the con-
vergence of the RW-DPI is eventually from above. Comb
ing with Theorem 4, one obtains the following

Theorem 5.We have

lim
n→`

2~n11!2

b3
@r~x,x8;b!2rn

RW~x,x8;b!#

52
\2

4m0
S p2

16
2

1

3D E
0

1

^xue2ubHi“Vi2

3e2(12u)bHux8&du.

As for the partial averaging case, the statement of Th
rem 5 can be written in the short form

r~x,x8;b!'rn
RW~x,x8;b!2

\2b3

8m0~n11!2 S p2

16
2

1

3D
3E

0

1

^xue2ubHi“Vi2e2(12u)bHux8&du.

~40!

From Theorems 4 and 5, and by using cyclic invariance,
easily proves the following relations.

Corollary 1. We have

Z~b!2Zn
PA~b!

Z~b!
'

\2b3

24m0~n11!2

E
R
r~x;b!i“V~x!i2dx

E
R
r~x;b!dx

and

Zn
RW~b!2Z~b!

Z~b!
'

\2b3

8m0~n11!2 S p2

16
2

1

3D

3

E
R
r~x;b!i“V~x!i2dx

E
R
r~x;b!dx

.

Observation 1.We havep2/1621/3'0.284,1/3, so one
may be tempted to say that the reweighted technique c
verges at a faster rate than the partial averaging meth
However, as previously mentioned in the text, both t
n-order LCPI and DPI reweighted techniques actually u
2n11 random variables to parametrize the paths. If the c
vention of denoting the order of an approximation by t
number of variables used to parametrize the paths is obe
then the constantp2/1621/3 should be increased four time
In this case, we have 430.28451.134, which means that th
partial averaging is about 1.134/(1/3)53.4 times faster than
the reweighted technique.

Observation 2.The asymptotic relative errors for the pa
tition functions shown in Corollary 1 can be evaluated duri
4-13
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the Monte Carlo procedure if so desired. It is a fact est
lished on several occasions@13,30# that the convergence o
the partial averaging density matrix and partition functio
for all series representations is monotonically from below.
particular, the PA-DPI subsequencen52k21 has the same
property since it is identical to the respective subsequenc
the PA-LCPI method. However, it might be possible that
partition functions for the reweighted methods are monoto
cally decreasing from above for then52k21 subsequence
In fact, Golden@37# and Thompson@38# have shown that the
partition function for the subsequencen52k21 of the trap-
ezoidal Trotter DPI method is monotonically decreasing, a
this might be true of the RW-DPI method, too.

Let us remember that there are potentials, as, for insta
the potentials with negative coulombic singularities, f
which the nonaveraged methods do not converge. C
versely, there are potentials that are smooth and boun
from below, as, for instance,V(x)5exp(x4) for which the
nonaveraged methods are convergent to the correct re
yet the partial averaging method is not convergent beca
V(x)5exp(x4) does not have a finite Gaussian transform. F
such potentials, it is expected that Theorem 5 as well as
second part of Corollary 1 are still true.

We shall reinforce the conclusions of this section by ve
fying Theorems 4 and 5 for the simple case of the quadr
potentialV(x)5m0v2x2/2. Again we use atomic units an
setm051, v51, andb510. The evaluation of then-order
partial averaging and reweighted elementsrn

PA(0;b) and
rn

RW(0;b) is analyzed in Appendix B. As discussed in Re
@13#, for each methodM the convergence constant

cM5 lim
n→`

r~0;b!2rn
M~0;b!

~n11!2

can be obtained numerically by analyzing the asympto
slope of the equation

cn
M5~4n12!2~n11/2!@r~0;b!2r4n12

M ~0;b!#

as a function ofn. More precisely, we havecM5 limn→`cn
M

2cn21
M . On the other hand, with the help of the exact dens

matrix r(x,x8;b) of the quadratic potential@39# and of the
relations~36! and ~40!, one computes

cPA5
b3

24E0

1

duE
R
dxr~0,x;ub!r„x,0;~12u!b…x250.0713

andcRW52@(3p2/16)21#cPA520.0606. The plots in Fig.
4 show that indeed the current slopescn

M2cn21
M converge to

the corresponding values predicted by Theorems 4 and 5
conclude this section, we analyze how smooth realistic th
dimensional potentials must be to fit the hypothesis of Th
rems 4 and 5. A prototypical example is the tridimensio
spherical potential

V~r !5
1

2
r 21

1

r a
, 0,a<1, ~41!
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for which both the partial averaging and the reweighted D
methods are convergent because the potentialV(r ) is a Kato-
class potential having a finite Gaussian transform and
cause Zcl(b),`. The reader may easily verify tha
i“(1/r a)i25a2/r 2a12 is locally integrable if and only ifa
,1/2. Therefore, ifa,1/2, Theorems 4 and 5 apply, and th
convergence of both methods isO(1/n2).

On the other hand, ifa>1/2, the convergence cannot b
O(1/n2) because the convergence constants are1`. This
can be proved by using the additional information that
density matrix for the Kato-class potentials is continuous a
strictly positive. In particular, there ise.0 andh.0 such
that r(x,b)>e for all r<h<1. Therefore, looking at the
bounds for the partition functions given by Corollary 1, w
have

E
R3

r~ x̄;b!i“V~ x̄!i2dx̄>4pea2E
0

h
r 22adr

>4pea2E
0

1

r 21dr51`.

We have treated this problem explicitly in order to show th
the nature of the singularities of the potential affects the r
of convergence even if the singularities are oriented ‘‘u
ward.’’ Therefore, in ‘‘pushing’’ the Monte Carlo simulation
to the limits, the reader may want to actually remove the
singularities if they are physically irrelevant. He/she can
this either by a simple truncation or by approximating t
singularity with a better behaved one.

Other prototypical examples of potentials are those h
ing negative singularities

V~r !5
1

2
r 22

1

r a
, 0,a<1. ~42!

For such potentials, the classical partition function is n
finite and the reweighted technique does not properly c
verge. However, the partial averaging method is converg
and, if a,1/2, the asymptotic convergence isO(1/n2). The
findings of this section demonstrate thatsmooth enoughpo-
tentials may actually be discontinuous in the thre
dimensional space.

FIG. 4. The current slopescn
M2cn21

M ~solid lines! are shown to
converge to the values predicted by Theorems 4 and 5~dotted
lines!.
4-14



r
pl

s
he
du

bi
o
er
th
a
q.

le

s

a
er
ro
is

s
rk

ha

os

in
th
b

ro
ap
e
s

nce
for
our
nce
ter-
n be
the
IV
ted
ula

the

5,

the
f the
de-

ci-
nd

s:

RANDOM SERIES AND DISCRETE PATH INTEGRAL . . . PHYSICAL REVIEW E 67, 026124 ~2003!
IV. SUMMARY AND DISCUSSION

A central theme of the present paper has been the cha
terization of various path integral approaches and the ex
ration of their interconnections. The Kac¸ interpretation of the
Feynman approach is a valuable tool for such an analy
We notice that it is difficult and unnatural to introduce t
random series representation by means of the Trotter pro
rule. Indeed, in order to show that the path integrals

E
0

1

V„xr~u!1Bu
0~ ā!…du ~43!

are correctly defined, one utilizes the fact that, with proba
ity 1, the Brownian paths are continuous. This property
the Brownian motion is not readily available from the Trott
product rule. However, as we have shown in Sec. II,
discrete methods can be directly derived from the Feynm
Kaç formula by simply replacing the integrals given by E
~43! with appropriate quadrature sums.

We have explored at some length two particular imp
mentations of path integral methods: the Le´vy-Ciesielski ap-
proach and the associated DPI technique. We have con
ered primitive, partial averaged, and reweighted versions
this methods. As discussed in Sec. III, the Le´vy-Ciesielski
approach is of particular importance because itsn52k21
subsequence can be rationalized both as a series and
discrete method. This dual character is valuable for sev
reasons. For example, it provides a convenient and rigo
reformulation of Coalson’s findings linking series and d
crete path integral methods, and, as illustrated by Eq.~27!,
suggests a means for reducing the numerical overhead a
ciated with path construction. Using the unified framewo
the Lévy-Ciesielski approach provides, we have shown t
the methods introduced by Kole and De Raedt@29# for sys-
tems with negative Coulombic singularities as well as th
introduced by Titantah, Pierleoni and Ciuchi@33# for the po-
laron problem are discrete versions of the partial averag
approach. Furthermore, Theorem 2 of Sec. III suggests
these previous methods can be implemented in a more ro
manner using the Le´vy-Ciesielski series approach.

We have been able to characterize the convergence p
erties of the partial averaging and reweighted DPI
proaches and, therefore, of then52k21 subsequence of th
corresponding LCPI techniques. In this respect, Theorem
02612
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and 5 of Sec. IV provide sharp estimates of the converge
constants for the calculation of density matrix elements
both the partial averaged and reweighted methods. To
knowledge, this is the first time that such exact converge
constants have been established. Beyond their intrinsic in
est, the knowledge of these convergence constants ca
used to devise an improved numerical implementation of
Feynman-Kac¸ approach. In particular, the results of Sec.
indicate that the convergence constants for the reweigh
and partial averaged methods are related by the form
cRW52@(3p2/16)21#cPA for all pairs of points (x,x8) and
for all b.0. Because the leading terms in 1/n2 thus cancel,
the approach defined by the equation

rn8~x,x8;b!5
rn

RW~x,x8;b!1@~3p2/16!21#rn
PA~x,x8;b!

3p2/16

has an asymptotic convergence better thanO(1/n2), i.e.,

lim
n→`

2~n11!2

b3
@r~x,x8;b!2rn8~x,x8;b!#50.

In fact, we believe that if the potentialV(x) also has a well
behaved second derivative, the convergence order of
present method isO(1/n3).

Finally, we note that with the help of Theorems 4 and
the asymptotic behavior of the so-calledT-method and
H-method energy estimators~cf. Sec. IV of Ref.@13#! can be
examined. In particular, it should be possible to deduce
convergence constants for these estimators from those o
corresponding density matrix expressions. We leave a
tailed analysis of such issues for future discussion.
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APPENDIX A

It is well known that ifA,B.0, anda5C/AAB such that
uau,1, then the following Mehler’s formula@40# holds for
all f andg whose squares have finite Gaussian transform
@ f g#ABC~x0 ,y0!5E
R
dxE

R
dy

1

2p

1

AAB2C2
expS 2

1

2

x2B1y2A22xyC

AB2C2 D f ~x01x!g~y01y!

5E
R
dxE

R
dy

1

2p

1

A12a2
expS 2

1

2

x21y222xya

12a2 D f ~x01xAA!g~y01yAB!

5
1

2p (
k50

`

akE
R
dxE

R
dye2(x21y2)/2Hk~x!Hk~y! f ~x01xAA!g~y01yAB!. ~A1!
4-15



-

ac

on

e

e

le

-

ep-
be
the
ula

l (
s

-

ve

nc-

CRISTIAN PREDESCU AND J. D. DOLL PHYSICAL REVIEW E67, 026124 ~2003!
In the above, the functionsHk(x) are the normalized Her
mite polynomials corresponding to the Gaussian weight

dm~x!5
1

A2p
e2x2/2.

They form a complete orthonormal basis in the Hilbert sp
Lm

2 (R), which is endowed with the scalar product

^cuf&5E
R
c~x!f~x!dm~x!.

Let us notice that according to our hypothesis, the functi
f (x01xAA) and g(y01xAB) as functions ofx are square
integrable againstdm(x) and thus they in the Hilbert spac
Lm

2 (R).
By repeated integration by parts, the formula~A1! is

shown to be equivalent to

@ f g#ABC~x0 ,y0!5 (
k50

`
Ck

k!
f̄ A

(k)~x0!ḡB
(k)~y0!, ~A2!

where, in general,f̄ A
(k)(x0) is thek-order derivative of

f̄ A~x0!5E
R

1

A2pA
e2z2/(2A) f ~x01z!dz.

Let us notice that the series~A1! can be extended to the cas
a51, too. Indeed, the last series in Eq.~A1! for the case
a51 is nothing else but the Bessel series

(
k50

`

^Hku f ~x01•AA!&^Hkug~y01•AB!&,

which is convergent to

^ f ~x01•AA!ug~y01•AB!&5E
R

f ~x01xAA!

3g~y01xAB!dm~x!.

The dots in the formulas above indicate the current variab
Next, we proceed to establish the inequality~31! from

Sec. III C. We start with the identity

E@U~x,x8,b;ā!2EU~x,x8,b;ā!#2

5EU~x,x8,b;ā!22@EU~x,x8,b;ā!#2. ~A3!

Clearly, we have

EU~x,x8,b;ā!5V̄u,0„xr~u!…. ~A4!

Moreover,

EU~x,x8,b;ā!25E
0

1

duE
0

1

dtEV„xr~u!1sBu
0
…

3V„xr~t!1sBt
0
…, ~A5!
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and the variablesBu
0 andBt

0 have a joint Gaussian distribu
tion of covariances

E~Bu
0!25u~12u!, E~Bt

0!25t~12t!,

and E~Bu
0Bt

0!5
u1t22ut2uu2tu

2
.

This covariance matrix is independent of any particular r
resentation of the Brownian bridge and, therefore, can
computed with the help of any basis. For instance, using
Wiener-Fourier basis, the last term of the above form
reads

E~Bu
0Bt

0!5
2

p2 (
k51

`
sin~kpu!sin~kpt!

k2
, ~A6!

and the sum of the above series can be shown to equau
1t22ut2uu2tu)/2. It is useful to define the quantitie
G0(u,t)5s2E(Bu

0Bt
0) and

D0
2~u,t!5G0

2~u!G0
2~t!2G0~u,t!2.

Then,

EU~x,x8,b;ā!2

5E
0

1

duE
0

1

dtE
R
dxE

R
dy

1

2pD0~u,t!

3expH 2
1

2

x2G0
2~t!1y2G0

2~u!22xyG0~u,t!

D0
2~u,t!

J
3V„xr~u!1x…V„xr~t!1y….

Using the expansion~A2!, one may write the above inte
gral as the sum of the series

EU~x,x8,b;ā!25 (
k50

`
1

k! E0

1

duE
0

1

dtG0~u,t!kV̄u,0
(k)
„xr~u!…

3V̄t,0
(k)
„xr~t!…,

whereV̄u,0
(k)(x) is thek-order derivative ofV̄u,0(x). With the

help of Eq.~A4!, one recognizes the first term of the abo
series to be@EU(x,x8,b;ā)#2, so that Eq.~A3! becomes

E@U~x,x8,b;ā!2EU~x,x8,b;ā!#2

5 (
k51

`
1

k! E0

1

duE
0

1

dtG0~u,t!kV̄u,0
(k)@xr~u!#V̄t,0

(k)@xr~t!#.

~A7!

Now, we make an important observation: as its eigenfu
tion expansion~A6! shows,G0(u,t) is a positive definite
integral kernelL2(@0,1#)→L2(@0,1#) and it is not difficult to
verify that all G0(u,t)k are positive definite. Therefore,
4-16



s

f

RANDOM SERIES AND DISCRETE PATH INTEGRAL . . . PHYSICAL REVIEW E 67, 026124 ~2003!
E
0

1

duE
0

1

dtG0~u,t!kV̄u,0
(k)
„xr~u!…V̄t,0

(k)
„xr~t!…>0

for all k>1. Considering only the first term in the serie
~A7!, we obtain the inequality

E@U~x,x8,b;ā!2EU~x,x8,b;ā!#2>bT1~x,x8;b!,
~A8!

where

T1~x,x8;b!5
\2

m0
E

0

1

duE
0

1

dtE@Bu
0Bt

0#V̄u,0
(1)
„xr~u!…

3V̄t,0
(1)
„xr~t!….
02612
It is not difficult to see that asb→0, we haveG0
2(u)→0 and

so,

T~x,x8!5 lim
b→0

T1~x,x8;b!

5
\2

m0
E

0

1

duE
0

1

dtE@Bu
0Bt

0#V(1)
„xr~u!…V(1)

„xr~t!….

~A9!

To prove the second inequality in Eq.~31!, one uses the
inequality 1/k!<1/(k21)! and the positivity of the terms o
the series~A7! to establish the inequality
E@U~x,x8,b;ā!2EU~x,x8,b;ā!#2<(
k50

`
1

k! E0

1

duE
0

1

dtG0~u,t!k11V̄u,0
(k11)

„xr~u!…V̄t,0
(k11)

„xr~t!…

5E
0

1

duE
0

1

dtG0~u,t!(
k50

`
1

k!
G0~u,t!kV̄u,0

(k11)
„xr~u!…V̄t,0

(k11)
„xr~t!…

5E
0

1

duE
0

1

dtG0~u,t!E
R
dxE

R
dy

1

2pD0~u,t!

3expH 2
1

2

x2G0
2~t!1y2G0

2~u!22xyG0~u,t!

D0
2~u,t!

J V(1)
„xr~u!1x…V(1)

„xr~t!1y….
ft
act

dix.

trix

the
en-
ly
n-
Therefore,

E@U~x,x8,b;ā!2EU~x,x8,b;ā!#2<bT2~x,x8;b!,
~A10!

where

T2~x,x8;b!5
\2

m0
E

0

1

duE
0

1

dtE@Bu
0Bt

0#E
R
dxE

R
dy

3
1

2pD0~u,t!
expH 2

1

2

3
x2G0

2~t!1y2G0
2~u!22xyG0~u,t!

D0
2~u,t!

J
3V(1)

„xr~u!1x…V(1)
„xr~t!1y….

Again, asb→0 we haveG0
2(u)→0 and

T~x,x8!5 lim
b→0

T2~x,x8;b!

5
\2

m0
E

0

1

duE
0

1

dtE@Bu
0Bt

0#V(1)
„xr~u!…V(1)

„xr~t!….

~A11!
The relations~A8!, ~A9!, ~A10!, and ~A11! combined
prove Eqs.~31! and ~32! from Sec. III C. The relations~38!
and~39! follow by a similar reasoning and their proof is le
to the reader. We only mention that one starts with the f
that the series~A1! is well defined and convergent fora
51 too, as shown in the beginning of the present appen

APPENDIX B

In this section, we discuss the computation of the ma
element ^0ue2bHu0& for the quadratic potentialV(x)
5m0v2x2/2 by means of the standard DPI method and
partial averaging and the reweighted DPI methods. The d
sity matrix for the quadratic potential is known analytical
~see Ref.@39#! and we do not reproduce it here. For a sta
dard DPI method specified by the quadrature points 05u0
,u1,•••,un,un1151, by the incrementsu i5ui 11
2ui , and by the weightsw0 ,w1 , . . . ,wn11, the formula
~12! becomes

rn
DPI~0;b!5E

R
dx1•••E

R
dxnps2u1

~x1!ps2u2
~x2

2x1!•••ps2un
~xn2xn21!ps2un

~xn!

3expH 2
m0v2b

2 (
i 51

n

wixi
2duJ . ~B1!
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Remember that s25b\2/m0. If we set x̄T

5(x1 ,x2 , . . . ,xn), the aboven-dimensional integral can b
written in the compact form

rn
DPI~0,0;b!5S )

i 50

n
1

2ps2u i
D 1/2E

Rn
e2 x̄TAx̄/2dx̄

5S )
i 50

n
1

2ps2u i
D 1/2FdetS A

2p D G21/2

, ~B2!

where the matrixA is the tridiagonal matrix defined by

Ai ,i5
1

s2u i 21

1
1

s2u i

1m0v2bwi for 1< i<n

and

Ai ,i 115Ai 11,i52
1

s2u i

for 1< i<n21.

The values of the quadrature points and the correspon
weights for the trapezoidal rule are well known, while for t
Gauss-Legendre quadrature scheme the reader may us
routine given in Ref.@20#.

The zero-order partial averaging density matrix for t
quadratic potential has the explicit expression

r0
PA~x,x8;b!5ps2~x82x!expF2

m0v2b

6
~x21x82

1xx81s2/2!G . ~B3!

Using Eq.~B3!, the reader may easily deduce that the cor
spondingn-order PA-DPI density matrix is

rn
PA~0;b!5S n11

2ps2D (n11)/2

expF2
b2\2v2

12~n11!G
3FdetS A

2p D G21/2

, ~B4!
h

o
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where the tridiagonal matrixA is defined by the relations

Ai ,i52Fn11

s2
1

m0v2b

3~n11!G for 1< i<n

and

Ai ,i 115Ai 11,i52
n11

s2
1

m0v2b

6~n11!
for 1< i<n21.

Finally, the zero-order reweighted density matrix has
form

r0
RW~x,x8;b!5ps2~x82x!~11b2\2v2/6!21/2

3expH 2
m0v2b

2 Fx21x821xx8

3

2
p2

162

b2\2v2~x1x8!2

11b2\2v2/6
G J , ~B5!

which can be deduced by direct integration. Let us set

hn
2511

b2\2v2

6~n11!2
.

Then,

rn
RW~0;b!5S n11

2ps2

1

hn
2D (n11)/2FdetS A

2p D G21/2

, ~B6!

where the tridiagonal matrixA is defined by the relations

Ai ,i52Fn11

s2
1

m0v2b

3~n11!
2S p

16D
2m0\2b3v4

hn
2~n11!3G

for 1< i<n and

Ai ,i 115Ai 11,i52
n11

s2
1

m0v2b

6~n11!
2S p

16D
2m0\2b3v4

hn
2~n11!3

for 1< i<n21.
-
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